/* * BIRD -- Simple Network Management Protocol (SNMP) helper functions * * (c) 2022 Vojtech Vilimek * (c) 2022 CZ.NIC z.s.p.o * * Can be freely distributed and used under the terms of the GNU GPL. * */ #include "snmp_utils.h" #include inline void snmp_pdu_context(struct snmp_pdu *pdu, struct snmp_proto *p, sock *sk) { pdu->p = p; pdu->error = AGENTX_RES_NO_ERROR; pdu->buffer = sk->tpos; pdu->size = sk->tbuf + sk->tbsize - sk->tpos; pdu->index = 0; pdu->sr_vb_start = NULL; pdu->sr_o_end = NULL; } /* * snmp_session - store packet ids from protocol to header * @p: source SNMP protocol instance * @h: dest PDU header */ inline void snmp_session(const struct snmp_proto *p, struct agentx_header *h) { STORE_U32(h->session_id, p->session_id); STORE_U32(h->transaction_id, p->transaction_id); STORE_U32(h->packet_id, p->packet_id); } inline void * snmp_varbind_data(const struct agentx_varbind *vb) { uint name_size = snmp_oid_size(&vb->name); return (void *) &vb->name + name_size; } /* * snmp_is_oid_empty - check if oid is null-valued * @oid: object identifier to check * * Test if the oid header is full of zeroes. For NULL-pointer @oid returns 0. * We ignore include field to prevent weird behaviour. */ inline int snmp_is_oid_empty(const struct oid *oid) { /* We intentionaly ignore padding that should be zeroed */ if (oid != NULL) return oid->n_subid == 0 && oid->prefix == 0; else return 0; } /* * snmp_oid_is_prefixable - check for prefixed form conversion possibility * @oid: Object Identifier in packet byte order to check * * Check if it is possible to convert @oid to prefixed form. The condition of * that is standart .1.3.6.1 internet prefix and 5-th id that fits in one byte. */ inline int snmp_pkt_oid_is_prefixable(const struct oid *oid) { if (LOAD_U8(oid->n_subid) < 5) return 0; for (int i = 0; i < 4; i++) if (LOAD_U32(oid->ids[i]) != snmp_internet[i]) return 0; if (LOAD_U32(oid->ids[4]) >= 256) return 0; return 1; } /* * snmp_oid_copy - copy OID from one place to another * @dest: destination to use * @src: OID to be copied from */ void snmp_oid_copy(struct oid *dest, const struct oid *src) { dest->n_subid = src->n_subid; dest->prefix = src->prefix; dest->include = src->include ? 1 : 0; dest->reserved = 0; memcpy(dest->ids, src->ids, src->n_subid * sizeof(u32)); } /* * snmp_oid_from_buf - copy OID from RX buffer to dest in native byte order * @dst: destination to use (native byte order) * @src: OID to be copied from (packet byte order) */ void snmp_oid_from_buf(struct oid *dst, const struct oid *src) { dst->n_subid = LOAD_U8(src->n_subid); dst->prefix = LOAD_U8(src->prefix); dst->include = LOAD_U8(src->include) ? 1 : 0; dst->reserved = 0; for (uint i = 0; i < dst->n_subid; i++) dst->ids[i] = LOAD_U32(src->ids[i]); } /* * snmp_oid_to_buf - copy OID to TX buffer with packet byte order * @dst: destination to use (packet byte order) * @src: OID to be copied from (native byte order) */ void snmp_oid_to_buf(struct oid *dst, const struct oid *src) { STORE_U8(dst->n_subid, src->n_subid); STORE_U8(dst->prefix, src->prefix); STORE_U8(dst->include, (src->include) ? 1 : 0); STORE_U8(dst->reserved, 0); for (uint i = 0; i < src->n_subid; i++) STORE_U32(dst->ids[i], src->ids[i]); } /* * snmp_str_size_from_len - return in-buffer octet string size * @len: length of C-string, returned from strlen() */ inline size_t snmp_str_size_from_len(uint len) { return 4 + BIRD_ALIGN(len, 4); } /* * snmp_str_size - return in packet size of supplied string * @str: measured string * * Returned value is string length aligned to 4 byte with 32bit length * annotation included. */ inline size_t snmp_str_size(const char *str) { return snmp_str_size_from_len(strlen(str)); } /* * snmp_oid_size - measure size of OID in bytes * @o: object identifier to use * * Work for both packet and cpu native byte orders. */ uint snmp_oid_size(const struct oid *o) { /* LOAD_U8() is in both cases basic mem read */ return 4 + (LOAD_U8(o->n_subid) * 4); } /* * snmp_oid_size_from_len - return size of OID with @n_subid subids in bytes * @n_subid: number of subids in ids array */ inline size_t snmp_oid_size_from_len(uint n_subid) { return sizeof(struct oid) + n_subid * sizeof(u32); } static inline uint snmp_get_octet_size(const struct agentx_octet_str *str) { return str->length; } /* * snmp_varbind_header_size - measure size of VarBind without data in bytes * @vb_name: VarBind OID name * * Return size including whole OID as well as the VarBind header. */ uint snmp_varbind_header_size(const struct oid *vb_name) { ASSUME(vb_name); return snmp_oid_size(vb_name) + OFFSETOF(struct agentx_varbind, name); } uint snmp_varbind_size_unsafe(const struct agentx_varbind *vb) { ASSUME(snmp_test_varbind_type(vb->type)); int value_size = agentx_type_size(vb->type); uint vb_header = snmp_varbind_header_size(&vb->name); if (value_size == 0) return vb_header; if (value_size > 0) return vb_header + value_size; switch (vb->type) { case AGENTX_OBJECT_ID:; struct oid *oid = snmp_varbind_data(vb); return vb_header + snmp_oid_size(oid); case AGENTX_OCTET_STRING: case AGENTX_IP_ADDRESS: case AGENTX_OPAQUE:; struct agentx_octet_str *string = snmp_varbind_data(vb); return vb_header + snmp_get_octet_size(string); default: /* Shouldn't happen */ die("getting size of VarBind with unknown type (%u)", vb->type); return 0; } } /* * snmp_varbind_size_from_len - get size in-buffer VarBind for known OID and data * @n_subid: number of subidentifiers of the VarBind's OID name * @type: type of VarBind * @len: length of variably long data * * For types with fixed size the @len is not used. For types such as Octet * String, or OID the @len is used directly. * * Return number of bytes used by VarBind in specified form. */ inline size_t snmp_varbind_size_from_len(uint n_subid, enum agentx_type type, uint len) { size_t sz = snmp_oid_size_from_len(n_subid) + sizeof(struct agentx_varbind) - sizeof(struct oid); int data_sz = agentx_type_size(type); if (data_sz < 0) sz += len; else sz += data_sz; return sz; } /* * snmp_test_varbind - test validity of VarBind type * @type: Type of VarBind in cpu native byte order */ int snmp_test_varbind_type(u16 type) { if (type == AGENTX_INTEGER || type == AGENTX_OCTET_STRING || type == AGENTX_NULL || type == AGENTX_OBJECT_ID || type == AGENTX_IP_ADDRESS || type == AGENTX_COUNTER_32 || type == AGENTX_GAUGE_32 || type == AGENTX_TIME_TICKS || type == AGENTX_OPAQUE || type == AGENTX_COUNTER_64 || type == AGENTX_NO_SUCH_OBJECT || type == AGENTX_NO_SUCH_INSTANCE || type == AGENTX_END_OF_MIB_VIEW) return 1; else return 0; } /* * snmp_valid_ip4_index - check IPv4 address validity in oid * @o: object identifier holding ip address * @start: index of first address id */ int snmp_valid_ip4_index(const struct oid *o, uint start) { if (start + 3 < o->n_subid) return snmp_valid_ip4_index_unsafe(o, start); else return 0; } /* * snmp_valid_ip4_index_unsafe - check validity of IPv4 address in oid * @o: object identifier holding ip address * @start: index of first address id * * This function is unsafe - no checks of object identifier ids * length sufficiency is done. */ int snmp_valid_ip4_index_unsafe(const struct oid *o, uint start) { for (int i = 0; i < 4; i++) if (o->ids[start + i] >= 256) return 0; return 1; } /* * snmp_put_nstr - copy c-string into buffer with limit * @buf: destination buffer * @str: string to use * @len: number of characters to use from string */ byte * snmp_put_nstr(byte *buf, const char *str, uint len) { uint alen = BIRD_ALIGN(len, 4); struct agentx_octet_str *octet = (void *) buf; STORE_U32(octet->length, len); memcpy(&octet->data, str, len); buf += len + sizeof(octet->length); /* Insert zero padding in the gap at the end */ for (uint i = 0; i < alen - len; i++) buf[i] = '\0'; return buf + (alen - len); } /* * snmp_put_str - put string into SNMP PDU transcieve buffer * @buf: pointer to first unoccupied buffer byte * @str: string to place * * Handles all conditions specified by RFC, namely string length annotation * and padding 4 byte alignment with zeroes. Return NULL if string is too large * for SNMP message. */ byte * snmp_put_str(byte *buf, const char *str) { uint len = strlen(str); return snmp_put_nstr(buf, str, len); } byte * snmp_put_ip4(byte *buf, ip4_addr addr) { /* octet string has size 4 bytes */ STATIC_ASSERT(sizeof(ip4_addr) == sizeof(u32)); STORE_PTR(buf, sizeof(ip4_addr)); /* Always use Network byte order */ put_u32(buf+4, ip4_to_u32(addr)); return buf + 8; } byte * snmp_put_blank(byte *buf) { STORE_PTR(buf, 0); return buf + 4; } /* * snmp_put_fbyte - put one padded byte to SNMP PDU transcieve buffer * @buf: pointer to free buffer byte * @data: byte to use * * Put @data into buffer @buf with 3B zeroed padding. */ byte * snmp_put_fbyte(byte *buf, u8 data) { STORE_U8(*buf++, data); memset(buf, 0, 3); /* we fill the 24bit padding with zeros */ return buf + 3; } /** * snmp_oid_compare - find the lexicographical order relation between @left and @right * @left: left object id relation operand * @right: right object id relation operand * * both @left and @right has to be non-blank. * function returns 0 if left == right, * -1 if left < right, * and 1 otherwise */ int snmp_oid_compare(const struct oid *left, const struct oid *right) { const u8 left_subids = left->n_subid; u8 right_subids = right->n_subid; /* see hack for more info */ const u8 left_prefix = left->prefix; const u8 right_prefix = right->prefix; if (left_prefix == 0 && right_prefix == 0) goto test_ids; if (right_prefix == 0) return (-1) * snmp_oid_compare(right, left); if (left_prefix == 0) { uint bound = MIN((uint) left_subids, (uint) ARRAY_SIZE(snmp_internet)); for (uint idx = 0; idx < bound; idx++) { u32 id = left->ids[idx]; if (id < snmp_internet[idx]) return -1; else if (id > snmp_internet[idx]) return 1; } if (left_subids <= ARRAY_SIZE(snmp_internet)) return -1; /* check prefix */ if (left->ids[4] < (u32) right_prefix) return -1; else if (left->ids[4] > (u32) right_prefix) return 1; /* the right prefix is already checked (+1) */ int limit = MIN(left_subids - (int) (ARRAY_SIZE(snmp_internet) + 1), (int) right_subids); for (int i = 0; i < limit; i++) { u32 left_id = left->ids[i + ARRAY_SIZE(snmp_internet) + 1]; u32 right_id = right->ids[i]; if (left_id < right_id) return -1; else if (left_id > right_id) return 1; } /* hack: we known at this point that right has >= 5 subids * (implicit in snmp_internet and oid->prefix), so * we simplify to common case by altering left_subids */ right_subids += 5; goto all_same; } if (left_prefix < right_prefix) return -1; else if (left_prefix > right_prefix) return 1; test_ids: for (int i = 0; i < MIN(left->n_subid, right->n_subid); i++) { u32 left_id = left->ids[i]; u32 right_id = right->ids[i]; if (left_id < right_id) return -1; else if (left_id > right_id) return 1; } all_same: /* shorter sequence is before longer in lexicografical order */ if (left_subids < right_subids) return -1; else if (left_subids > right_subids) return 1; else return 0; } struct snmp_registration * snmp_registration_create(struct snmp_proto *p, enum agentx_mibs mib) { struct snmp_registration *r; r = mb_alloc(p->p.pool, sizeof(struct snmp_registration)); r->n.prev = r->n.next = NULL; r->session_id = p->session_id; r->transaction_id = p->transaction_id; /* will be incremented by snmp_session() macro during packet assembly */ r->packet_id = p->packet_id + 1; r->mib = mib; add_tail(&p->registration_queue, &r->n); return r; } int snmp_registration_match(struct snmp_registration *r, struct agentx_header *h) { return (LOAD_U32(r->session_id) == h->session_id) && (LOAD_U32(r->transaction_id) == h->transaction_id) && (LOAD_U32(r->packet_id) == h->packet_id); } /* * agentx_type_size - get in packet VarBind type size * @type: VarBind type * * Returns length of agentx_type @type in bytes, Variable length types result in * -1. */ int agentx_type_size(enum agentx_type type) { /* * AGENTX_NULL, AGENTX_NO_SUCH_OBJECT, AGENTX_NO_SUCH_INSTANCE, * AGENTX_END_OF_MIB_VIEW */ if (type >= AGENTX_NO_SUCH_OBJECT || type == AGENTX_NULL) return 0; /* AGENTX_INTEGER, AGENTX_COUNTER_32, AGENTX_GAUGE_32, AGENTX_TIME_TICKS */ if (type >= AGENTX_COUNTER_32 && type <= AGENTX_TIME_TICKS || type == AGENTX_INTEGER) return 4; if (type == AGENTX_COUNTER_64) return 8; if (AGENTX_IP_ADDRESS) return snmp_str_size_from_len(4); /* AGENTX_OBJECT_ID, AGENTX_OCTET_STRING, AGENTX_OPAQUE */ else return -1; } static inline void snmp_varbind_type32(struct agentx_varbind *vb, struct snmp_pdu *c, enum agentx_type type, u32 val) { ASSUME(agentx_type_size(type) == 4); /* type as 4B representation */ vb->type = type; u32 *data = snmp_varbind_data(vb); STORE_PTR(data, val); data++; c->buffer = (byte *) data; } inline void snmp_varbind_int(struct snmp_pdu *c, u32 val) { snmp_varbind_type32(c->sr_vb_start, c, AGENTX_INTEGER, val); } inline void snmp_varbind_counter32(struct snmp_pdu *c, u32 val) { snmp_varbind_type32(c->sr_vb_start, c, AGENTX_COUNTER_32, val); } inline void snmp_varbind_ticks(struct snmp_pdu *c, u32 val) { snmp_varbind_type32(c->sr_vb_start, c, AGENTX_TIME_TICKS, val); } inline void snmp_varbind_gauge32(struct snmp_pdu *c, s64 time) { snmp_varbind_type32(c->sr_vb_start, c, AGENTX_GAUGE_32, MAX(0, MIN(time, UINT32_MAX))); } inline void snmp_varbind_ip4(struct snmp_pdu *c, ip4_addr addr) { c->sr_vb_start->type = AGENTX_IP_ADDRESS; c->buffer = snmp_put_ip4(snmp_varbind_data(c->sr_vb_start), addr); } /* * snmp_varbind_nstr - fill varbind context with octet string * @vb: VarBind to use * @c: PDU information * @str: C-string to put as the VarBind data * @len: length of the string @str * * Beware: this function assumes there is enough space in the underlaying * TX buffer. The caller has to provide that, see snmp_str_size_from_len() for * more info. */ void snmp_varbind_nstr(struct snmp_pdu *c, const char *str, uint len) { c->sr_vb_start->type = AGENTX_OCTET_STRING; c->buffer = snmp_put_nstr(snmp_varbind_data(c->sr_vb_start), str, len); } /* * snmp_varbind_oid - fill VarBind data with OID @oid_val * @oid_val - Object Identifier in cpu native byte order * * Function puts the @oid_val to the packet byte order. */ void snmp_varbind_oid(struct snmp_pdu *c, const struct oid *oid_val) { c->sr_vb_start->type = AGENTX_OBJECT_ID; snmp_oid_to_buf(snmp_varbind_data(c->sr_vb_start), oid_val); } inline enum agentx_type snmp_search_res_to_type(enum snmp_search_res r) { ASSUME(r != SNMP_SEARCH_OK); enum agentx_type type_arr[] = { [SNMP_SEARCH_NO_OBJECT] = AGENTX_NO_SUCH_OBJECT, [SNMP_SEARCH_NO_INSTANCE] = AGENTX_NO_SUCH_INSTANCE, [SNMP_SEARCH_END_OF_VIEW] = AGENTX_END_OF_MIB_VIEW, }; return type_arr[r]; } inline int snmp_test_close_reason(byte value) { if (value >= (byte) AGENTX_CLOSE_OTHER && value <= (byte) AGENTX_CLOSE_BY_MANAGER) return 1; else return 0; } /* * Debugging */ void UNUSED snmp_oid_dump(const struct oid *oid) { log(L_WARN "OID DUMP ========"); if (oid == NULL) { log(L_WARN "is eqaul to NULL"); log(L_WARN "OID DUMP END ===="); log(L_WARN "."); return; } else if (snmp_is_oid_empty(oid)) { log(L_WARN "is empty"); log(L_WARN "OID DUMP END ===="); log(L_WARN "."); return; } log(L_WARN " #ids: %4u prefix %3u include: %5s", oid->n_subid, oid->prefix, (oid->include)? "true" : "false"); log(L_WARN "IDS -------------"); for (int i = 0; i < oid->n_subid; i++) log(L_WARN " %2u: %11u ~ 0x%08X", i, oid->ids[i], oid->ids[i]); log(L_WARN "OID DUMP END ===="); log(L_WARN); } void UNUSED snmp_oid_log(const struct oid *oid) { char buf[1024] = { }; char *pos = buf; if (snmp_oid_is_prefixed(oid)) { for (uint i = 0; i < ARRAY_SIZE(snmp_internet); i++) pos += snprintf(pos, buf + 1024 - pos, ".%u", snmp_internet[i]); pos += snprintf(pos, buf + 1024 - pos, ".%u", oid->prefix); } for (int id = 0; id < oid->n_subid; id++) pos += snprintf(pos, buf + 1024 - pos, ".%u", oid->ids[id]); log(L_WARN, "%s", buf); } /* * snmp_oid_common_ancestor - find a common ancestor * @left: first OID * @right: second OID * @out: buffer for result * * The @out must be large enough to always fit the resulting OID, a safe value * is minimum between number of left subids and right subids. The result might * be NULL OID in cases where there is no common subid. The result could be also * viewed as longest common prefix. Note that if both @left and @right are * prefixable but not prefixed the result in @out will also not be prefixed. * * This function is used intensively by |snmp_test.c|. */ void snmp_oid_common_ancestor(const struct oid *left, const struct oid *right, struct oid *out) { ASSERT(left && right && out); out->include = 0; out->reserved = 0; out->prefix = 0; u32 offset = 0; u8 left_ids = left->n_subid, right_ids = right->n_subid; int l = snmp_oid_is_prefixed(left), r = snmp_oid_is_prefixed(right); if (l && r) { if (left->prefix != right->prefix) { out->n_subid = 4; for (uint id = 0; id < ARRAY_SIZE(snmp_internet); id++) out->ids[id] = snmp_internet[id]; return; } out->prefix = left->prefix; } else if (!l && r) { if (left_ids == 0) { /* finish creating NULL OID */ out->n_subid = 0; return; } for (uint id = 0; id < MIN(ARRAY_SIZE(snmp_internet), left_ids); id++) { if (left->ids[id] != snmp_internet[id]) { out->n_subid = id; return; } out->ids[id] = snmp_internet[id]; } if (left_ids <= ARRAY_SIZE(snmp_internet)) { out->n_subid = left_ids; return; } /* index 4 is conresponding to the prefix in prefixed OID */ if (left->ids[4] != (u32) right->prefix) { out->n_subid = ARRAY_SIZE(snmp_internet); return; } /* delete snmp_internet from out->ids and store OID prefix */ offset = ARRAY_SIZE(snmp_internet) + 1; out->n_subid = out->n_subid - ARRAY_SIZE(snmp_internet); out->prefix = right->prefix; } else if (l && !r) { snmp_oid_common_ancestor(right, left, out); return; } ASSERT(offset <= left_ids); u8 subids = 0; for (u32 id = 0; id < MIN(left_ids - offset, right_ids); id++) { if (left->ids[offset + id] == right->ids[id]) { subids++; out->ids[id] = right->ids[id]; } else break; } out->n_subid = subids; } /* * SNMP MIB tree walking */ /** * snmp_walk_init - Try to find exactly matching OID packat VarBind in MIB tree * @tree: MIB tree to use * @walk: MIB tree walk state storage * @c: AgentX PDU creation context * * Populate the @walk state and try to find MIB tree leaf equivalent to * c->sr_vb_start which is requested VarBind to fill based on it's OID name. * Return value is either pointer to valid MIB tree leaf or NULL if no leaf * matched. */ struct mib_leaf * snmp_walk_init(struct mib_tree *tree, struct mib_walk_state *walk, struct snmp_pdu *c) { mib_tree_walk_init(walk, tree); mib_node_u *node = mib_tree_find(tree, walk, &c->sr_vb_start->name); // TODO hide me in mib_tree code /* mib_tree_find() returns NULL if the oid is longer than existing any path */ if (node == NULL && walk->stack_pos > 0) node = walk->stack[walk->stack_pos - 1]; return (!node || !mib_node_is_leaf(node)) ? NULL : &node->leaf; } /** * snmp_walk_next - wrapper around MIB tree mib_walk_next() for single call * @tree: MIB tree to use * @walk: MIB tree walk state storage * @c: AgentX PDU creation context * * The snmp_walk_next() function searches MIB tree with updates of the VarBind * OID name with. */ struct mib_leaf * snmp_walk_next(struct mib_tree *tree, struct mib_walk_state *walk, struct snmp_pdu *c) { ASSUME(tree && walk); if (!walk->stack_pos) return NULL; mib_node_u *node = walk->stack[walk->stack_pos - 1]; int found = 0; struct mib_leaf *leaf = &node->leaf; if (mib_node_is_leaf(node) && leaf->call_next) { const struct oid *oid = &c->sr_vb_start->name; if (mib_tree_walk_oid_compare(walk, oid) > 0) { int old = snmp_oid_size(&c->sr_vb_start->name); if (mib_tree_walk_to_oid(walk, &c->sr_vb_start->name, 20 * sizeof(u32))) return NULL; int new = snmp_oid_size(&c->sr_vb_start->name); c->buffer += (new - old); } found = !leaf->call_next(walk, c); } else if (mib_node_is_leaf(node) && c->sr_vb_start->name.include) { found = 1; c->sr_vb_start->name.include = 0; } const struct oid *oid = &c->sr_vb_start->name; u32 skip = (walk->id_pos < oid->n_subid) ? oid->ids[walk->id_pos] : 0; while (!found && (leaf = mib_tree_walk_next_leaf(tree, walk, skip)) != NULL) { /* mib_tree_walk_next() forces VarBind's name OID overwriting */ int old = snmp_oid_size(&c->sr_vb_start->name); // TODO autogrow if (mib_tree_walk_to_oid(walk, &c->sr_vb_start->name, 20 * sizeof(u32))) return NULL; int new = snmp_oid_size(&c->sr_vb_start->name); c->buffer += (new - old); if (leaf->call_next && !leaf->call_next(walk, c)) found = 1; else if (!leaf->call_next) found = 1; oid = &c->sr_vb_start->name; skip = (walk->id_pos < oid->n_subid) ? oid->ids[walk->id_pos] : 0; } if (!found) return NULL; return leaf; } /** * snmp_walk_fill - fill current VarBind by filler hook invocation * @leaf: MIB tree leaf with filler hook * @walk: MIB tree walk state * @c: AgentX PDU creation context * * The function takes responsibility for VarBind type setting (for known VB * types) and for buffer space allocated for VarBind data (based on type or * configured size). This simplifies code of filler hooks in most cases. * We also allow the @leaf to be NULL, in which case we set the VarBind to * error type noSuchObject. */ enum snmp_search_res snmp_walk_fill(struct mib_leaf *leaf, struct mib_walk_state *walk, struct snmp_pdu *c) { struct agentx_varbind *vb = c->sr_vb_start; enum snmp_search_res res; /* The OID c->sr_vb_start->name is either left untouched for agentx-Get-PDU, * or updated by snmp_walk_next() for agentx-GetNext-PDU and agentx-GetBulk-PDU * * The null OID in c->sr_o_end means no limits. The OID c->sr_o_end is always * null for agentx-Get-PDU and therefore evaluates to 0. */ if (!snmp_check_search_limit(&c->sr_vb_start->name, c->sr_o_end)) { res = SNMP_SEARCH_END_OF_VIEW; vb->type = snmp_search_res_to_type(res); return res; } if (!leaf) return SNMP_SEARCH_NO_OBJECT; uint size = 0; enum agentx_type type = AGENTX_NULL; if (leaf->size >= 0) { if (leaf->type == AGENTX_OCTET_STRING || leaf->type == AGENTX_OPAQUE || leaf->type == AGENTX_OBJECT_ID) { type = leaf->type; size = leaf->size; } else if (leaf->type != AGENTX_INVALID) { type = leaf->type; size = agentx_type_size(leaf->type); } else size = leaf->size; } (void) snmp_tbuf_reserve(c, size); vb->type = (u16) type; res = leaf->filler(walk, c); vb = c->sr_vb_start; if (res != SNMP_SEARCH_OK) vb->type = snmp_search_res_to_type(res); ASSUME(vb->type == leaf->type || vb->type == AGENTX_END_OF_MIB_VIEW || vb->type == AGENTX_NO_SUCH_OBJECT || vb->type == AGENTX_NO_SUCH_INSTANCE); return res; }