/* * BIRD -- Protocols * * (c) 1998--2000 Martin Mares * * Can be freely distributed and used under the terms of the GNU GPL. */ #undef LOCAL_DEBUG #include "nest/bird.h" #include "nest/protocol.h" #include "lib/resource.h" #include "lib/lists.h" #include "lib/event.h" #include "lib/timer.h" #include "lib/string.h" #include "conf/conf.h" #include "nest/route.h" #include "nest/iface.h" #include "nest/mpls.h" #include "nest/cli.h" #include "filter/filter.h" #include "filter/f-inst.h" pool *proto_pool; list STATIC_LIST_INIT(proto_list); static list STATIC_LIST_INIT(protocol_list); struct protocol *class_to_protocol[PROTOCOL__MAX]; #define CD(c, msg, args...) ({ if (c->debug & D_STATES) log(L_TRACE "%s.%s: " msg, c->proto->name, c->name ?: "?", ## args); }) #define PD(p, msg, args...) ({ if (p->debug & D_STATES) log(L_TRACE "%s: " msg, p->name, ## args); }) static timer *proto_shutdown_timer; static timer *gr_wait_timer; #define GRS_NONE 0 #define GRS_INIT 1 #define GRS_ACTIVE 2 #define GRS_DONE 3 static int graceful_restart_state; static u32 graceful_restart_locks; static char *p_states[] = { "DOWN", "START", "UP", "STOP" }; static char *c_states[] = { "DOWN", "START", "UP", "FLUSHING" }; static char *e_states[] = { "DOWN", "FEEDING", "READY" }; extern struct protocol proto_unix_iface; static void channel_request_reload(struct channel *c); static void proto_shutdown_loop(timer *); static void proto_rethink_goal(struct proto *p); static char *proto_state_name(struct proto *p); static void channel_verify_limits(struct channel *c); static inline void channel_reset_limit(struct channel_limit *l); static inline int proto_is_done(struct proto *p) { return (p->proto_state == PS_DOWN) && (p->active_channels == 0); } static inline int channel_is_active(struct channel *c) { return (c->channel_state == CS_START) || (c->channel_state == CS_UP); } static inline int channel_reloadable(struct channel *c) { return c->proto->reload_routes && c->reloadable; } static inline void channel_log_state_change(struct channel *c) { if (c->export_state) CD(c, "State changed to %s/%s", c_states[c->channel_state], e_states[c->export_state]); else CD(c, "State changed to %s", c_states[c->channel_state]); } static void proto_log_state_change(struct proto *p) { if (p->debug & D_STATES) { char *name = proto_state_name(p); if (name != p->last_state_name_announced) { p->last_state_name_announced = name; PD(p, "State changed to %s", proto_state_name(p)); } } else p->last_state_name_announced = NULL; } struct channel_config * proto_cf_find_channel(struct proto_config *pc, uint net_type) { struct channel_config *cc; WALK_LIST(cc, pc->channels) if (cc->net_type == net_type) return cc; return NULL; } /** * proto_find_channel_by_table - find channel connected to a routing table * @p: protocol instance * @t: routing table * * Returns pointer to channel or NULL */ struct channel * proto_find_channel_by_table(struct proto *p, struct rtable *t) { struct channel *c; WALK_LIST(c, p->channels) if (c->table == t) return c; return NULL; } /** * proto_find_channel_by_name - find channel by its name * @p: protocol instance * @n: channel name * * Returns pointer to channel or NULL */ struct channel * proto_find_channel_by_name(struct proto *p, const char *n) { struct channel *c; WALK_LIST(c, p->channels) if (!strcmp(c->name, n)) return c; return NULL; } /** * proto_add_channel - connect protocol to a routing table * @p: protocol instance * @cf: channel configuration * * This function creates a channel between the protocol instance @p and the * routing table specified in the configuration @cf, making the protocol hear * all changes in the table and allowing the protocol to update routes in the * table. * * The channel is linked in the protocol channel list and when active also in * the table channel list. Channels are allocated from the global resource pool * (@proto_pool) and they are automatically freed when the protocol is removed. */ struct channel * proto_add_channel(struct proto *p, struct channel_config *cf) { struct channel *c = mb_allocz(proto_pool, cf->channel->channel_size); c->name = cf->name; c->channel = cf->channel; c->proto = p; c->table = cf->table->table; c->in_filter = cf->in_filter; c->out_filter = cf->out_filter; c->rx_limit = cf->rx_limit; c->in_limit = cf->in_limit; c->out_limit = cf->out_limit; c->net_type = cf->net_type; c->ra_mode = cf->ra_mode; c->preference = cf->preference; c->debug = cf->debug; c->merge_limit = cf->merge_limit; c->in_keep_filtered = cf->in_keep_filtered; c->rpki_reload = cf->rpki_reload; c->bmp_hack = cf->bmp_hack; c->channel_state = CS_DOWN; c->export_state = ES_DOWN; c->last_state_change = current_time(); c->reloadable = 1; init_list(&c->roa_subscriptions); CALL(c->channel->init, c, cf); add_tail(&p->channels, &c->n); CD(c, "Connected to table %s", c->table->name); return c; } void proto_remove_channel(struct proto *p UNUSED, struct channel *c) { ASSERT(c->channel_state == CS_DOWN); CD(c, "Removed", c->name); rem_node(&c->n); mb_free(c); } static void proto_start_channels(struct proto *p) { struct channel *c; WALK_LIST(c, p->channels) if (!c->disabled) channel_set_state(c, CS_UP); } static void proto_pause_channels(struct proto *p) { struct channel *c; WALK_LIST(c, p->channels) if (!c->disabled && channel_is_active(c)) channel_set_state(c, CS_START); } static void proto_stop_channels(struct proto *p) { struct channel *c; WALK_LIST(c, p->channels) if (!c->disabled && channel_is_active(c)) channel_set_state(c, CS_FLUSHING); } static void proto_remove_channels(struct proto *p) { struct channel *c; WALK_LIST_FIRST(c, p->channels) proto_remove_channel(p, c); } static void channel_schedule_feed(struct channel *c, int initial) { // DBG("%s: Scheduling meal\n", p->name); ASSERT(c->channel_state == CS_UP); c->export_state = ES_FEEDING; c->refeeding = !initial; ev_schedule_work(c->feed_event); } static void channel_feed_loop(void *ptr) { struct channel *c = ptr; if (c->export_state != ES_FEEDING) return; /* Start feeding */ if (!c->feed_active) { if (c->proto->feed_begin) c->proto->feed_begin(c, !c->refeeding); c->refeed_pending = 0; } // DBG("Feeding protocol %s continued\n", p->name); if (!rt_feed_channel(c)) { ev_schedule_work(c->feed_event); return; } /* Reset export limit if the feed ended with acceptable number of exported routes */ struct channel_limit *l = &c->out_limit; if (c->refeeding && (l->state == PLS_BLOCKED) && (c->refeed_count <= l->limit) && (c->stats.exp_routes <= l->limit)) { log(L_INFO "Protocol %s resets route export limit (%u)", c->proto->name, l->limit); channel_reset_limit(&c->out_limit); /* Continue in feed - it will process routing table again from beginning */ c->refeed_count = 0; ev_schedule_work(c->feed_event); return; } // DBG("Feeding protocol %s finished\n", p->name); c->export_state = ES_READY; channel_log_state_change(c); if (c->proto->feed_end) c->proto->feed_end(c); /* Restart feeding */ if (c->refeed_pending) channel_request_feeding(c); } static void channel_roa_in_changed(struct rt_subscription *s) { struct channel *c = s->data; int active = c->reload_event && ev_active(c->reload_event); CD(c, "Reload triggered by RPKI change%s", active ? " - already active" : ""); if (!active) channel_request_reload(c); else c->reload_pending = 1; } static void channel_roa_out_changed(struct rt_subscription *s) { struct channel *c = s->data; int active = (c->export_state == ES_FEEDING); CD(c, "Feeding triggered by RPKI change%s", active ? " - already active" : ""); if (!active) channel_request_feeding(c); else c->refeed_pending = 1; } /* Temporary code, subscriptions should be changed to resources */ struct roa_subscription { struct rt_subscription s; node roa_node; }; static int channel_roa_is_subscribed(struct channel *c, rtable *tab, int dir) { void (*hook)(struct rt_subscription *) = dir ? channel_roa_in_changed : channel_roa_out_changed; struct roa_subscription *s; node *n; WALK_LIST2(s, n, c->roa_subscriptions, roa_node) if ((s->s.tab == tab) && (s->s.hook == hook)) return 1; return 0; } static void channel_roa_subscribe(struct channel *c, rtable *tab, int dir) { if (channel_roa_is_subscribed(c, tab, dir)) return; struct roa_subscription *s = mb_allocz(c->proto->pool, sizeof(struct roa_subscription)); s->s.hook = dir ? channel_roa_in_changed : channel_roa_out_changed; s->s.data = c; rt_subscribe(tab, &s->s); add_tail(&c->roa_subscriptions, &s->roa_node); } static void channel_roa_unsubscribe(struct roa_subscription *s) { rt_unsubscribe(&s->s); rem_node(&s->roa_node); mb_free(s); } static void channel_roa_subscribe_filter(struct channel *c, int dir) { const struct filter *f = dir ? c->in_filter : c->out_filter; struct rtable *tab; int valid = 1, found = 0; if ((f == FILTER_ACCEPT) || (f == FILTER_REJECT)) return; /* No automatic reload for non-reloadable channels */ if (dir && !channel_reloadable(c)) valid = 0; #ifdef CONFIG_BGP /* No automatic reload for BGP channels without in_table / out_table */ if (c->channel == &channel_bgp) valid = dir ? !!c->in_table : !!c->out_table; #endif struct filter_iterator fit; FILTER_ITERATE_INIT(&fit, f, c->proto->pool); FILTER_ITERATE(&fit, fi) { switch (fi->fi_code) { case FI_ROA_CHECK_IMPLICIT: tab = fi->i_FI_ROA_CHECK_IMPLICIT.rtc->table; if (valid) channel_roa_subscribe(c, tab, dir); found = 1; break; case FI_ROA_CHECK_EXPLICIT: tab = fi->i_FI_ROA_CHECK_EXPLICIT.rtc->table; if (valid) channel_roa_subscribe(c, tab, dir); found = 1; break; default: break; } } FILTER_ITERATE_END; FILTER_ITERATE_CLEANUP(&fit); if (!valid && found) log(L_WARN "%s.%s: Automatic RPKI reload not active for %s", c->proto->name, c->name ?: "?", dir ? "import" : "export"); } static void channel_roa_unsubscribe_all(struct channel *c) { struct roa_subscription *s; node *n, *x; WALK_LIST2_DELSAFE(s, n, x, c->roa_subscriptions, roa_node) channel_roa_unsubscribe(s); } static void channel_start_export(struct channel *c) { ASSERT(c->channel_state == CS_UP); ASSERT(c->export_state == ES_DOWN); channel_schedule_feed(c, 1); /* Sets ES_FEEDING */ } static void channel_stop_export(struct channel *c) { /* Need to abort feeding */ if (c->export_state == ES_FEEDING) rt_feed_channel_abort(c); c->export_state = ES_DOWN; c->stats.exp_routes = 0; bmap_reset(&c->export_map, 1024); } /* Called by protocol for reload from in_table */ void channel_schedule_reload(struct channel *c) { ASSERT(c->channel_state == CS_UP); rt_reload_channel_abort(c); ev_schedule_work(c->reload_event); } static void channel_reload_loop(void *ptr) { struct channel *c = ptr; /* Start reload */ if (!c->reload_active) c->reload_pending = 0; if (!rt_reload_channel(c)) { ev_schedule_work(c->reload_event); return; } /* Restart reload */ if (c->reload_pending) channel_request_reload(c); } static void channel_reset_import(struct channel *c) { /* Need to abort feeding */ ev_postpone(c->reload_event); rt_reload_channel_abort(c); rt_prune_sync(c->in_table, 1); } static void channel_reset_export(struct channel *c) { /* Just free the routes */ rt_prune_sync(c->out_table, 1); } /* Called by protocol to activate in_table */ void channel_setup_in_table(struct channel *c) { struct rtable_config *cf = mb_allocz(c->proto->pool, sizeof(struct rtable_config)); cf->name = "import"; cf->addr_type = c->net_type; cf->internal = 1; c->in_table = cf->table = rt_setup(c->proto->pool, cf); c->reload_event = ev_new_init(c->proto->pool, channel_reload_loop, c); } /* Called by protocol to activate out_table */ void channel_setup_out_table(struct channel *c) { struct rtable_config *cf = mb_allocz(c->proto->pool, sizeof(struct rtable_config)); cf->name = "export"; cf->addr_type = c->net_type; cf->internal = 1; c->out_table = rt_setup(c->proto->pool, cf); } static void channel_do_start(struct channel *c) { rt_lock_table(c->table); add_tail(&c->table->channels, &c->table_node); c->proto->active_channels++; c->feed_event = ev_new_init(c->proto->pool, channel_feed_loop, c); bmap_init(&c->export_map, c->proto->pool, 1024); memset(&c->stats, 0, sizeof(struct proto_stats)); channel_reset_limit(&c->rx_limit); channel_reset_limit(&c->in_limit); channel_reset_limit(&c->out_limit); CALL(c->channel->start, c); } static void channel_do_up(struct channel *c) { /* Register RPKI/ROA subscriptions */ if (c->rpki_reload) { channel_roa_subscribe_filter(c, 1); channel_roa_subscribe_filter(c, 0); } } static void channel_do_flush(struct channel *c) { if (!c->bmp_hack) rt_schedule_prune(c->table); c->gr_wait = 0; if (c->gr_lock) channel_graceful_restart_unlock(c); CALL(c->channel->shutdown, c); /* This have to be done in here, as channel pool is freed before channel_do_down() */ bmap_free(&c->export_map); c->in_table = NULL; c->reload_event = NULL; c->out_table = NULL; channel_roa_unsubscribe_all(c); } static void channel_do_down(struct channel *c) { ASSERT(!c->feed_active && !c->reload_active); rem_node(&c->table_node); rt_unlock_table(c->table); c->proto->active_channels--; if ((c->stats.imp_routes + c->stats.filt_routes) != 0) log(L_ERR "%s: Channel %s is down but still has some routes", c->proto->name, c->name); // bmap_free(&c->export_map); memset(&c->stats, 0, sizeof(struct proto_stats)); c->in_table = NULL; c->reload_event = NULL; c->out_table = NULL; /* The in_table and out_table are going to be freed by freeing their resource pools. */ CALL(c->channel->cleanup, c); /* Schedule protocol shutddown */ if (proto_is_done(c->proto)) ev_schedule(c->proto->event); } void channel_set_state(struct channel *c, uint state) { uint cs = c->channel_state; uint es = c->export_state; DBG("%s reporting channel %s state transition %s -> %s\n", c->proto->name, c->name, c_states[cs], c_states[state]); if (state == cs) return; c->channel_state = state; c->last_state_change = current_time(); switch (state) { case CS_START: ASSERT(cs == CS_DOWN || cs == CS_UP); if (cs == CS_DOWN) channel_do_start(c); if (es != ES_DOWN) channel_stop_export(c); if (c->in_table && (cs == CS_UP)) channel_reset_import(c); if (c->out_table && (cs == CS_UP)) channel_reset_export(c); break; case CS_UP: ASSERT(cs == CS_DOWN || cs == CS_START); if (cs == CS_DOWN) channel_do_start(c); if (!c->gr_wait && c->proto->rt_notify) channel_start_export(c); channel_do_up(c); break; case CS_FLUSHING: ASSERT(cs == CS_START || cs == CS_UP); if (es != ES_DOWN) channel_stop_export(c); if (c->in_table && (cs == CS_UP)) channel_reset_import(c); if (c->out_table && (cs == CS_UP)) channel_reset_export(c); channel_do_flush(c); break; case CS_DOWN: ASSERT(cs == CS_FLUSHING); channel_do_down(c); break; default: ASSERT(0); } channel_log_state_change(c); } /** * channel_request_feeding - request feeding routes to the channel * @c: given channel * * Sometimes it is needed to send again all routes to the channel. This is * called feeding and can be requested by this function. This would cause * channel export state transition to ES_FEEDING (during feeding) and when * completed, it will switch back to ES_READY. This function can be called * even when feeding is already running, in that case it is restarted. */ void channel_request_feeding(struct channel *c) { ASSERT(c->channel_state == CS_UP); CD(c, "Feeding requested"); /* Do nothing if we are still waiting for feeding */ if (c->export_state == ES_DOWN) return; /* If we are already feeding, we want to restart it */ if (c->export_state == ES_FEEDING) { /* Unless feeding is in initial state */ if (!c->feed_active) return; rt_feed_channel_abort(c); } /* Track number of exported routes during refeed */ c->refeed_count = 0; channel_schedule_feed(c, 0); /* Sets ES_FEEDING */ channel_log_state_change(c); } static void channel_request_reload(struct channel *c) { ASSERT(c->channel_state == CS_UP); ASSERT(channel_reloadable(c)); CD(c, "Reload requested"); c->proto->reload_routes(c); /* * Should this be done before reload_routes() hook? * Perhaps, but routes are updated asynchronously. */ channel_reset_limit(&c->rx_limit); channel_reset_limit(&c->in_limit); } const struct channel_class channel_basic = { .channel_size = sizeof(struct channel), .config_size = sizeof(struct channel_config) }; void * channel_config_new(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto) { struct channel_config *cf = NULL; struct rtable_config *tab = NULL; if (net_type) { if (!net_val_match(net_type, proto->protocol->channel_mask)) cf_error("Unsupported channel type"); if (proto->net_type && (net_type != proto->net_type) && (net_type != NET_MPLS)) cf_error("Different channel type"); tab = new_config->def_tables[net_type]; } if (!cc) cc = &channel_basic; cf = cfg_allocz(cc->config_size); cf->name = name; cf->channel = cc; cf->parent = proto; cf->table = tab; cf->out_filter = FILTER_REJECT; cf->net_type = net_type; cf->ra_mode = RA_OPTIMAL; cf->preference = proto->protocol->preference; cf->debug = new_config->channel_default_debug; cf->rpki_reload = 1; add_tail(&proto->channels, &cf->n); return cf; } void * channel_config_get(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto) { struct channel_config *cf; /* We are using name as token, so no strcmp() */ WALK_LIST(cf, proto->channels) if (cf->name == name) { /* Allow to redefine channel only if inherited from template */ if (cf->parent == proto) cf_error("Multiple %s channels", name); cf->parent = proto; cf->copy = 1; return cf; } return channel_config_new(cc, name, net_type, proto); } struct channel_config * channel_copy_config(struct channel_config *src, struct proto_config *proto) { struct channel_config *dst = cfg_alloc(src->channel->config_size); memcpy(dst, src, src->channel->config_size); memset(&dst->n, 0, sizeof(node)); add_tail(&proto->channels, &dst->n); CALL(src->channel->copy_config, dst, src); return dst; } static int reconfigure_type; /* Hack to propagate type info to channel_reconfigure() */ int channel_reconfigure(struct channel *c, struct channel_config *cf) { /* Touched by reconfiguration */ c->stale = 0; /* FIXME: better handle these changes, also handle in_keep_filtered */ if ((c->table != cf->table->table) || (cf->ra_mode && (c->ra_mode != cf->ra_mode))) return 0; /* Note that filter_same() requires arguments in (new, old) order */ int import_changed = !filter_same(cf->in_filter, c->in_filter); int export_changed = !filter_same(cf->out_filter, c->out_filter); int rpki_reload_changed = (cf->rpki_reload != c->rpki_reload); if (c->preference != cf->preference) import_changed = 1; if (c->merge_limit != cf->merge_limit) export_changed = 1; /* Reconfigure channel fields */ c->in_filter = cf->in_filter; c->out_filter = cf->out_filter; c->rx_limit = cf->rx_limit; c->in_limit = cf->in_limit; c->out_limit = cf->out_limit; // c->ra_mode = cf->ra_mode; c->merge_limit = cf->merge_limit; c->preference = cf->preference; c->debug = cf->debug; c->in_keep_filtered = cf->in_keep_filtered; c->rpki_reload = cf->rpki_reload; channel_verify_limits(c); /* Execute channel-specific reconfigure hook */ if (c->channel->reconfigure && !c->channel->reconfigure(c, cf, &import_changed, &export_changed)) return 0; /* If the channel is not open, it has no routes and we cannot reload it anyways */ if (c->channel_state != CS_UP) goto done; /* Update RPKI/ROA subscriptions */ if (import_changed || export_changed || rpki_reload_changed) { channel_roa_unsubscribe_all(c); if (c->rpki_reload) { channel_roa_subscribe_filter(c, 1); channel_roa_subscribe_filter(c, 0); } } if (reconfigure_type == RECONFIG_SOFT) { if (import_changed) log(L_INFO "Channel %s.%s changed import", c->proto->name, c->name); if (export_changed) log(L_INFO "Channel %s.%s changed export", c->proto->name, c->name); goto done; } /* Route reload may be not supported */ if (import_changed && !channel_reloadable(c)) return 0; if (import_changed || export_changed) log(L_INFO "Reloading channel %s.%s", c->proto->name, c->name); if (import_changed) channel_request_reload(c); if (export_changed) channel_request_feeding(c); done: CD(c, "Reconfigured"); return 1; } int proto_configure_channel(struct proto *p, struct channel **pc, struct channel_config *cf) { struct channel *c = *pc; if (!c && cf) { /* We could add the channel, but currently it would just stay in down state until protocol is restarted, so it is better to force restart anyways. */ if (p->proto_state != PS_DOWN) { log(L_INFO "Cannot add channel %s.%s", p->name, cf->name); return 0; } *pc = proto_add_channel(p, cf); } else if (c && !cf) { if (c->channel_state != CS_DOWN) { log(L_INFO "Cannot remove channel %s.%s", c->proto->name, c->name); return 0; } proto_remove_channel(p, c); *pc = NULL; } else if (c && cf) { if (!channel_reconfigure(c, cf)) { log(L_INFO "Cannot reconfigure channel %s.%s", c->proto->name, c->name); return 0; } } return 1; } /** * proto_setup_mpls_map - automatically setup FEC map for protocol * @p: affected protocol * @rts: RTS_* value for generated MPLS routes * @hooks: whether to update rte_insert / rte_remove hooks * * Add, remove or reconfigure MPLS FEC map of the protocol @p, depends on * whether MPLS channel exists, and setup rte_insert / rte_remove hooks with * default MPLS handlers. It is a convenience function supposed to be called * from the protocol start and configure hooks, after reconfiguration of * channels. For shutdown, use proto_shutdown_mpls_map(). If caller uses its own * rte_insert / rte_remove hooks, it is possible to disable updating hooks and * doing that manually. */ void proto_setup_mpls_map(struct proto *p, uint rts, int hooks) { struct mpls_fec_map *m = p->mpls_map; struct channel *c = p->mpls_channel; if (!m && c) { /* * Note that when called from a protocol start hook, it is called before * mpls_channel_start(). But FEC map locks MPLS domain internally so it does * not depend on lock from MPLS channel. */ p->mpls_map = mpls_fec_map_new(p->pool, c, rts); } else if (m && !c) { /* * Note that for reconfiguration, it is called after the MPLS channel has * been already removed. But removal of active MPLS channel would trigger * protocol restart anyways. */ mpls_fec_map_free(m); p->mpls_map = NULL; } else if (m && c) { // mpls_fec_map_reconfigure(m, c); } if (hooks) { p->rte_insert = p->mpls_map ? mpls_rte_insert : NULL; p->rte_remove = p->mpls_map ? mpls_rte_remove : NULL; } } /** * proto_shutdown_mpls_map - automatically shutdown FEC map for protocol * @p: affected protocol * @hooks: whether to update rte_insert / rte_remove hooks * * Remove MPLS FEC map of the protocol @p during protocol shutdown. */ void proto_shutdown_mpls_map(struct proto *p, int hooks) { struct mpls_fec_map *m = p->mpls_map; if (!m) return; mpls_fec_map_free(m); p->mpls_map = NULL; if (hooks) { p->rte_insert = NULL; p->rte_remove = NULL; } } static void proto_event(void *ptr) { struct proto *p = ptr; if (p->do_start) { if_feed_baby(p); p->do_start = 0; } if (p->do_stop) { if (p->proto == &proto_unix_iface) if_flush_ifaces(p); p->do_stop = 0; } if (proto_is_done(p)) { if (p->proto->cleanup) p->proto->cleanup(p); p->active = 0; proto_log_state_change(p); proto_rethink_goal(p); } } /** * proto_new - create a new protocol instance * @c: protocol configuration * * When a new configuration has been read in, the core code starts * initializing all the protocol instances configured by calling their * init() hooks with the corresponding instance configuration. The initialization * code of the protocol is expected to create a new instance according to the * configuration by calling this function and then modifying the default settings * to values wanted by the protocol. */ void * proto_new(struct proto_config *cf) { struct proto *p = mb_allocz(proto_pool, cf->protocol->proto_size); p->cf = cf; p->debug = cf->debug; p->mrtdump = cf->mrtdump; p->name = cf->name; p->proto = cf->protocol; p->net_type = cf->net_type; p->disabled = cf->disabled; p->hash_key = random_u32(); cf->proto = p; init_list(&p->channels); return p; } static struct proto * proto_init(struct proto_config *c, node *n) { struct protocol *pr = c->protocol; struct proto *p = pr->init(c); p->proto_state = PS_DOWN; p->last_state_change = current_time(); p->vrf = c->vrf; p->vrf_set = c->vrf_set; insert_node(&p->n, n); p->event = ev_new_init(proto_pool, proto_event, p); PD(p, "Initializing%s", p->disabled ? " [disabled]" : ""); return p; } static void proto_start(struct proto *p) { /* Here we cannot use p->cf->name since it won't survive reconfiguration */ p->pool = rp_new(proto_pool, p->proto->name); if (graceful_restart_state == GRS_INIT) p->gr_recovery = 1; } /** * proto_config_new - create a new protocol configuration * @pr: protocol the configuration will belong to * @class: SYM_PROTO or SYM_TEMPLATE * * Whenever the configuration file says that a new instance * of a routing protocol should be created, the parser calls * proto_config_new() to create a configuration entry for this * instance (a structure staring with the &proto_config header * containing all the generic items followed by protocol-specific * ones). Also, the configuration entry gets added to the list * of protocol instances kept in the configuration. * * The function is also used to create protocol templates (when class * SYM_TEMPLATE is specified), the only difference is that templates * are not added to the list of protocol instances and therefore not * initialized during protos_commit()). */ void * proto_config_new(struct protocol *pr, int class) { struct proto_config *cf = cfg_allocz(pr->config_size); if (class == SYM_PROTO) add_tail(&new_config->protos, &cf->n); cf->global = new_config; cf->protocol = pr; cf->name = pr->name; cf->class = class; cf->debug = new_config->proto_default_debug; cf->mrtdump = new_config->proto_default_mrtdump; init_list(&cf->channels); return cf; } /** * proto_copy_config - copy a protocol configuration * @dest: destination protocol configuration * @src: source protocol configuration * * Whenever a new instance of a routing protocol is created from the * template, proto_copy_config() is called to copy a content of * the source protocol configuration to the new protocol configuration. * Name, class and a node in protos list of @dest are kept intact. * copy_config() protocol hook is used to copy protocol-specific data. */ void proto_copy_config(struct proto_config *dest, struct proto_config *src) { struct channel_config *cc; node old_node; int old_class; const char *old_name; if (dest->protocol != src->protocol) cf_error("Can't copy configuration from a different protocol type"); if (dest->protocol->copy_config == NULL) cf_error("Inheriting configuration for %s is not supported", src->protocol->name); DBG("Copying configuration from %s to %s\n", src->name, dest->name); /* * Copy struct proto_config here. Keep original node, class and name. * protocol-specific config copy is handled by protocol copy_config() hook */ old_node = dest->n; old_class = dest->class; old_name = dest->name; memcpy(dest, src, src->protocol->config_size); dest->n = old_node; dest->class = old_class; dest->name = old_name; init_list(&dest->channels); WALK_LIST(cc, src->channels) channel_copy_config(cc, dest); /* FIXME: allow for undefined copy_config */ dest->protocol->copy_config(dest, src); } void proto_clone_config(struct symbol *sym, struct proto_config *parent) { struct proto_config *cf = proto_config_new(parent->protocol, SYM_PROTO); proto_copy_config(cf, parent); cf->name = sym->name; cf->proto = NULL; cf->parent = parent; sym->class = cf->class; sym->proto = cf; } static void proto_undef_clone(struct symbol *sym, struct proto_config *cf) { rem_node(&cf->n); sym->class = SYM_VOID; sym->proto = NULL; } /** * protos_preconfig - pre-configuration processing * @c: new configuration * * This function calls the preconfig() hooks of all routing * protocols available to prepare them for reading of the new * configuration. */ void protos_preconfig(struct config *c) { struct protocol *p; init_list(&c->protos); DBG("Protocol preconfig:"); WALK_LIST(p, protocol_list) { DBG(" %s", p->name); p->name_counter = 0; if (p->preconfig) p->preconfig(p, c); } DBG("\n"); } static int proto_reconfigure(struct proto *p, struct proto_config *oc, struct proto_config *nc, int type) { /* If the protocol is DOWN, we just restart it */ if (p->proto_state == PS_DOWN) return 0; /* If there is a too big change in core attributes, ... */ if ((nc->protocol != oc->protocol) || (nc->net_type != oc->net_type) || (nc->disabled != p->disabled) || (nc->vrf != oc->vrf) || (nc->vrf_set != oc->vrf_set)) return 0; p->name = nc->name; p->debug = nc->debug; p->mrtdump = nc->mrtdump; reconfigure_type = type; /* Execute protocol specific reconfigure hook */ if (!p->proto->reconfigure || !p->proto->reconfigure(p, nc)) return 0; DBG("\t%s: same\n", oc->name); PD(p, "Reconfigured"); p->cf = nc; return 1; } /** * protos_commit - commit new protocol configuration * @new: new configuration * @old: old configuration or %NULL if it's boot time config * @force_reconfig: force restart of all protocols (used for example * when the router ID changes) * @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD) * * Scan differences between @old and @new configuration and adjust all * protocol instances to conform to the new configuration. * * When a protocol exists in the new configuration, but it doesn't in the * original one, it's immediately started. When a collision with the other * running protocol would arise, the new protocol will be temporarily stopped * by the locking mechanism. * * When a protocol exists in the old configuration, but it doesn't in the * new one, it's shut down and deleted after the shutdown completes. * * When a protocol exists in both configurations, the core decides * whether it's possible to reconfigure it dynamically - it checks all * the core properties of the protocol (changes in filters are ignored * if type is RECONFIG_SOFT) and if they match, it asks the * reconfigure() hook of the protocol to see if the protocol is able * to switch to the new configuration. If it isn't possible, the * protocol is shut down and a new instance is started with the new * configuration after the shutdown is completed. */ void protos_commit(struct config *new, struct config *old, int force_reconfig, int type) { struct proto_config *oc, *nc; struct symbol *sym; struct proto *p; node *n; DBG("protos_commit:\n"); if (old) { WALK_LIST(oc, old->protos) { p = oc->proto; sym = cf_find_symbol(new, oc->name); /* Handle dynamic protocols */ if (!sym && oc->parent && !new->shutdown) { struct symbol *parsym = cf_find_symbol(new, oc->parent->name); if (parsym && parsym->class == SYM_PROTO) { /* This is hack, we would like to share config, but we need to copy it now */ new_config = new; cfg_mem = new->mem; new->current_scope = new->root_scope; sym = cf_get_symbol(new, oc->name); proto_clone_config(sym, parsym->proto); new_config = NULL; cfg_mem = NULL; } } if (sym && sym->class == SYM_PROTO && !new->shutdown) { /* Found match, let's check if we can smoothly switch to new configuration */ /* No need to check description */ nc = sym->proto; nc->proto = p; /* We will try to reconfigure protocol p */ if (! force_reconfig && proto_reconfigure(p, oc, nc, type)) continue; if (nc->parent) { proto_undef_clone(sym, nc); goto remove; } /* Unsuccessful, we will restart it */ if (!p->disabled && !nc->disabled) log(L_INFO "Restarting protocol %s", p->name); else if (p->disabled && !nc->disabled) log(L_INFO "Enabling protocol %s", p->name); else if (!p->disabled && nc->disabled) log(L_INFO "Disabling protocol %s", p->name); p->down_code = nc->disabled ? PDC_CF_DISABLE : PDC_CF_RESTART; p->cf_new = nc; } else if (!new->shutdown) { remove: log(L_INFO "Removing protocol %s", p->name); p->down_code = PDC_CF_REMOVE; p->cf_new = NULL; } else if (new->gr_down) { p->down_code = PDC_CMD_GR_DOWN; p->cf_new = NULL; } else /* global shutdown */ { p->down_code = PDC_CMD_SHUTDOWN; p->cf_new = NULL; } p->reconfiguring = 1; config_add_obstacle(old); proto_rethink_goal(p); } } struct proto *first_dev_proto = NULL; n = NODE &(proto_list.head); WALK_LIST(nc, new->protos) if (!nc->proto) { /* Not a first-time configuration */ if (old) log(L_INFO "Adding protocol %s", nc->name); p = proto_init(nc, n); n = NODE p; if (p->proto == &proto_unix_iface) first_dev_proto = p; } else n = NODE nc->proto; DBG("Protocol start\n"); /* Start device protocol first */ if (first_dev_proto) proto_rethink_goal(first_dev_proto); /* Determine router ID for the first time - it has to be here and not in global_commit() because it is postponed after start of device protocol */ if (!config->router_id) { config->router_id = if_choose_router_id(config->router_id_from, 0); if (!config->router_id) die("Cannot determine router ID, please configure it manually"); } /* Start all new protocols */ WALK_LIST_DELSAFE(p, n, proto_list) proto_rethink_goal(p); } static void proto_rethink_goal(struct proto *p) { struct protocol *q; byte goal; if (p->reconfiguring && !p->active) { struct proto_config *nc = p->cf_new; node *n = p->n.prev; DBG("%s has shut down for reconfiguration\n", p->name); p->cf->proto = NULL; config_del_obstacle(p->cf->global); proto_remove_channels(p); rem_node(&p->n); rfree(p->event); mb_free(p->message); mb_free(p); if (!nc) return; p = proto_init(nc, n); } /* Determine what state we want to reach */ if (p->disabled || p->reconfiguring) goal = PS_DOWN; else goal = PS_UP; q = p->proto; if (goal == PS_UP) { if (!p->active) { /* Going up */ DBG("Kicking %s up\n", p->name); PD(p, "Starting"); proto_start(p); proto_notify_state(p, (q->start ? q->start(p) : PS_UP)); } } else { if (p->proto_state == PS_START || p->proto_state == PS_UP) { /* Going down */ DBG("Kicking %s down\n", p->name); PD(p, "Shutting down"); proto_notify_state(p, (q->shutdown ? q->shutdown(p) : PS_DOWN)); } } } struct proto * proto_spawn(struct proto_config *cf, uint disabled) { struct proto *p = proto_init(cf, TAIL(proto_list)); p->disabled = disabled; proto_rethink_goal(p); return p; } /** * DOC: Graceful restart recovery * * Graceful restart of a router is a process when the routing plane (e.g. BIRD) * restarts but both the forwarding plane (e.g kernel routing table) and routing * neighbors keep proper routes, and therefore uninterrupted packet forwarding * is maintained. * * BIRD implements graceful restart recovery by deferring export of routes to * protocols until routing tables are refilled with the expected content. After * start, protocols generate routes as usual, but routes are not propagated to * them, until protocols report that they generated all routes. After that, * graceful restart recovery is finished and the export (and the initial feed) * to protocols is enabled. * * When graceful restart recovery need is detected during initialization, then * enabled protocols are marked with @gr_recovery flag before start. Such * protocols then decide how to proceed with graceful restart, participation is * voluntary. Protocols could lock the recovery for each channel by function * channel_graceful_restart_lock() (state stored in @gr_lock flag), which means * that they want to postpone the end of the recovery until they converge and * then unlock it. They also could set @gr_wait before advancing to %PS_UP, * which means that the core should defer route export to that channel until * the end of the recovery. This should be done by protocols that expect their * neigbors to keep the proper routes (kernel table, BGP sessions with BGP * graceful restart capability). * * The graceful restart recovery is finished when either all graceful restart * locks are unlocked or when graceful restart wait timer fires. * */ static void graceful_restart_done(timer *t); /** * graceful_restart_recovery - request initial graceful restart recovery * * Called by the platform initialization code if the need for recovery * after graceful restart is detected during boot. Have to be called * before protos_commit(). */ void graceful_restart_recovery(void) { graceful_restart_state = GRS_INIT; } /** * graceful_restart_init - initialize graceful restart * * When graceful restart recovery was requested, the function starts an active * phase of the recovery and initializes graceful restart wait timer. The * function have to be called after protos_commit(). */ void graceful_restart_init(void) { if (!graceful_restart_state) return; log(L_INFO "Graceful restart started"); if (!graceful_restart_locks) { graceful_restart_done(NULL); return; } graceful_restart_state = GRS_ACTIVE; gr_wait_timer = tm_new_init(proto_pool, graceful_restart_done, NULL, 0, 0); tm_start(gr_wait_timer, config->gr_wait S); } /** * graceful_restart_done - finalize graceful restart * @t: unused * * When there are no locks on graceful restart, the functions finalizes the * graceful restart recovery. Protocols postponing route export until the end of * the recovery are awakened and the export to them is enabled. All other * related state is cleared. The function is also called when the graceful * restart wait timer fires (but there are still some locks). */ static void graceful_restart_done(timer *t UNUSED) { log(L_INFO "Graceful restart done"); graceful_restart_state = GRS_DONE; struct proto *p; WALK_LIST(p, proto_list) { if (!p->gr_recovery) continue; struct channel *c; WALK_LIST(c, p->channels) { /* Resume postponed export of routes */ if ((c->channel_state == CS_UP) && c->gr_wait && c->proto->rt_notify) channel_start_export(c); /* Cleanup */ c->gr_wait = 0; c->gr_lock = 0; } p->gr_recovery = 0; } graceful_restart_locks = 0; } void graceful_restart_show_status(void) { if (graceful_restart_state != GRS_ACTIVE) return; cli_msg(-24, "Graceful restart recovery in progress"); cli_msg(-24, " Waiting for %d channels to recover", graceful_restart_locks); cli_msg(-24, " Wait timer is %t/%u", tm_remains(gr_wait_timer), config->gr_wait); } /** * channel_graceful_restart_lock - lock graceful restart by channel * @p: channel instance * * This function allows a protocol to postpone the end of graceful restart * recovery until it converges. The lock is removed when the protocol calls * channel_graceful_restart_unlock() or when the channel is closed. * * The function have to be called during the initial phase of graceful restart * recovery and only for protocols that are part of graceful restart (i.e. their * @gr_recovery is set), which means it should be called from protocol start * hooks. */ void channel_graceful_restart_lock(struct channel *c) { ASSERT(graceful_restart_state == GRS_INIT); ASSERT(c->proto->gr_recovery); if (c->gr_lock) return; c->gr_lock = 1; graceful_restart_locks++; } /** * channel_graceful_restart_unlock - unlock graceful restart by channel * @p: channel instance * * This function unlocks a lock from channel_graceful_restart_lock(). It is also * automatically called when the lock holding protocol went down. */ void channel_graceful_restart_unlock(struct channel *c) { if (!c->gr_lock) return; c->gr_lock = 0; graceful_restart_locks--; if ((graceful_restart_state == GRS_ACTIVE) && !graceful_restart_locks) tm_start(gr_wait_timer, 0); } /** * protos_dump_all - dump status of all protocols * * This function dumps status of all existing protocol instances to the * debug output. It involves printing of general status information * such as protocol states, its position on the protocol lists * and also calling of a dump() hook of the protocol to print * the internals. */ void protos_dump_all(void) { debug("Protocols:\n"); struct proto *p; WALK_LIST(p, proto_list) { debug(" protocol %s state %s\n", p->name, p_states[p->proto_state]); struct channel *c; WALK_LIST(c, p->channels) { debug("\tTABLE %s\n", c->table->name); if (c->in_filter) debug("\tInput filter: %s\n", filter_name(c->in_filter)); if (c->out_filter) debug("\tOutput filter: %s\n", filter_name(c->out_filter)); } if (p->proto->dump && (p->proto_state != PS_DOWN)) p->proto->dump(p); } } /** * proto_build - make a single protocol available * @p: the protocol * * After the platform specific initialization code uses protos_build() * to add all the standard protocols, it should call proto_build() for * all platform specific protocols to inform the core that they exist. */ void proto_build(struct protocol *p) { add_tail(&protocol_list, &p->n); ASSERT(p->class); ASSERT(!class_to_protocol[p->class]); class_to_protocol[p->class] = p; } /* FIXME: convert this call to some protocol hook */ extern void bfd_init_all(void); void protos_build_gen(void); /** * protos_build - build a protocol list * * This function is called during BIRD startup to insert * all standard protocols to the global protocol list. Insertion * of platform specific protocols (such as the kernel syncer) * is in the domain of competence of the platform dependent * startup code. */ void protos_build(void) { protos_build_gen(); proto_pool = rp_new(&root_pool, "Protocols"); proto_shutdown_timer = tm_new(proto_pool); proto_shutdown_timer->hook = proto_shutdown_loop; } /* Temporary hack to propagate restart to BGP */ int proto_restart; static void proto_shutdown_loop(timer *t UNUSED) { struct proto *p, *p_next; WALK_LIST_DELSAFE(p, p_next, proto_list) if (p->down_sched) { proto_restart = (p->down_sched == PDS_RESTART); p->disabled = 1; proto_rethink_goal(p); if (proto_restart) { p->disabled = 0; proto_rethink_goal(p); } } } static inline void proto_schedule_down(struct proto *p, byte restart, byte code) { /* Does not work for other states (even PS_START) */ ASSERT(p->proto_state == PS_UP); /* Scheduled restart may change to shutdown, but not otherwise */ if (p->down_sched == PDS_DISABLE) return; p->down_sched = restart ? PDS_RESTART : PDS_DISABLE; p->down_code = code; tm_start_max(proto_shutdown_timer, restart ? 250 MS : 0); } /** * proto_set_message - set administrative message to protocol * @p: protocol * @msg: message * @len: message length (-1 for NULL-terminated string) * * The function sets administrative message (string) related to protocol state * change. It is called by the nest code for manual enable/disable/restart * commands all routes to the protocol, and by protocol-specific code when the * protocol state change is initiated by the protocol. Using NULL message clears * the last message. The message string may be either NULL-terminated or with an * explicit length. */ void proto_set_message(struct proto *p, char *msg, int len) { mb_free(p->message); p->message = NULL; if (!msg || !len) return; if (len < 0) len = strlen(msg); if (!len) return; p->message = mb_alloc(proto_pool, len + 1); memcpy(p->message, msg, len); p->message[len] = 0; } static const char * channel_limit_name(struct channel_limit *l) { const char *actions[] = { [PLA_WARN] = "warn", [PLA_BLOCK] = "block", [PLA_RESTART] = "restart", [PLA_DISABLE] = "disable", }; return actions[l->action]; } /** * channel_notify_limit: notify about limit hit and take appropriate action * @c: channel * @l: limit being hit * @dir: limit direction (PLD_*) * @rt_count: the number of routes * * The function is called by the route processing core when limit @l * is breached. It activates the limit and tooks appropriate action * according to @l->action. */ void channel_notify_limit(struct channel *c, struct channel_limit *l, int dir, u32 rt_count) { const char *dir_name[PLD_MAX] = { "receive", "import" , "export" }; const byte dir_down[PLD_MAX] = { PDC_RX_LIMIT_HIT, PDC_IN_LIMIT_HIT, PDC_OUT_LIMIT_HIT }; struct proto *p = c->proto; if (l->state == PLS_BLOCKED) return; /* For warning action, we want the log message every time we hit the limit */ if (!l->state || ((l->action == PLA_WARN) && (rt_count == l->limit))) log(L_WARN "Protocol %s hits route %s limit (%d), action: %s", p->name, dir_name[dir], l->limit, channel_limit_name(l)); switch (l->action) { case PLA_WARN: l->state = PLS_ACTIVE; break; case PLA_BLOCK: l->state = PLS_BLOCKED; break; case PLA_RESTART: case PLA_DISABLE: l->state = PLS_BLOCKED; if (p->proto_state == PS_UP) proto_schedule_down(p, l->action == PLA_RESTART, dir_down[dir]); break; } } static void channel_verify_limits(struct channel *c) { struct channel_limit *l; u32 all_routes = c->stats.imp_routes + c->stats.filt_routes; l = &c->rx_limit; if (l->action && (all_routes > l->limit)) channel_notify_limit(c, l, PLD_RX, all_routes); l = &c->in_limit; if (l->action && (c->stats.imp_routes > l->limit)) channel_notify_limit(c, l, PLD_IN, c->stats.imp_routes); l = &c->out_limit; if (l->action && (c->stats.exp_routes > l->limit)) channel_notify_limit(c, l, PLD_OUT, c->stats.exp_routes); } static inline void channel_reset_limit(struct channel_limit *l) { if (l->action) l->state = PLS_INITIAL; } static inline void proto_do_start(struct proto *p) { p->active = 1; p->do_start = 1; ev_schedule(p->event); } static void proto_do_up(struct proto *p) { if (!p->main_source) { p->main_source = rt_get_source(p, 0); rt_lock_source(p->main_source); } proto_start_channels(p); } static inline void proto_do_pause(struct proto *p) { proto_pause_channels(p); } static void proto_do_stop(struct proto *p) { p->down_sched = 0; p->gr_recovery = 0; p->do_stop = 1; ev_schedule(p->event); if (p->main_source) { rt_unlock_source(p->main_source); p->main_source = NULL; } proto_stop_channels(p); } static void proto_do_down(struct proto *p) { p->down_code = 0; neigh_prune(); rfree(p->pool); p->pool = NULL; /* Shutdown is finished in the protocol event */ if (proto_is_done(p)) ev_schedule(p->event); } /** * proto_notify_state - notify core about protocol state change * @p: protocol the state of which has changed * @ps: the new status * * Whenever a state of a protocol changes due to some event internal * to the protocol (i.e., not inside a start() or shutdown() hook), * it should immediately notify the core about the change by calling * proto_notify_state() which will write the new state to the &proto * structure and take all the actions necessary to adapt to the new * state. State change to PS_DOWN immediately frees resources of protocol * and might execute start callback of protocol; therefore, * it should be used at tail positions of protocol callbacks. */ void proto_notify_state(struct proto *p, uint state) { uint ps = p->proto_state; DBG("%s reporting state transition %s -> %s\n", p->name, p_states[ps], p_states[state]); if (state == ps) return; p->proto_state = state; p->last_state_change = current_time(); switch (state) { case PS_START: ASSERT(ps == PS_DOWN || ps == PS_UP); if (ps == PS_DOWN) proto_do_start(p); else proto_do_pause(p); break; case PS_UP: ASSERT(ps == PS_DOWN || ps == PS_START); if (ps == PS_DOWN) proto_do_start(p); proto_do_up(p); break; case PS_STOP: ASSERT(ps == PS_START || ps == PS_UP); proto_do_stop(p); break; case PS_DOWN: if (ps != PS_STOP) proto_do_stop(p); proto_do_down(p); break; default: bug("%s: Invalid state %d", p->name, ps); } proto_log_state_change(p); } /* * CLI Commands */ static char * proto_state_name(struct proto *p) { switch (p->proto_state) { case PS_DOWN: return p->active ? "flush" : "down"; case PS_START: return "start"; case PS_UP: return "up"; case PS_STOP: return "stop"; default: return "???"; } } static void channel_show_stats(struct channel *c) { struct proto_stats *s = &c->stats; if (c->in_keep_filtered) cli_msg(-1006, " Routes: %u imported, %u filtered, %u exported, %u preferred", s->imp_routes, s->filt_routes, s->exp_routes, s->pref_routes); else cli_msg(-1006, " Routes: %u imported, %u exported, %u preferred", s->imp_routes, s->exp_routes, s->pref_routes); cli_msg(-1006, " Route change stats: received rejected filtered ignored accepted"); cli_msg(-1006, " Import updates: %10u %10u %10u %10u %10u", s->imp_updates_received, s->imp_updates_invalid, s->imp_updates_filtered, s->imp_updates_ignored, s->imp_updates_accepted); cli_msg(-1006, " Import withdraws: %10u %10u --- %10u %10u", s->imp_withdraws_received, s->imp_withdraws_invalid, s->imp_withdraws_ignored, s->imp_withdraws_accepted); cli_msg(-1006, " Export updates: %10u %10u %10u --- %10u", s->exp_updates_received, s->exp_updates_rejected, s->exp_updates_filtered, s->exp_updates_accepted); cli_msg(-1006, " Export withdraws: %10u --- --- --- %10u", s->exp_withdraws_received, s->exp_withdraws_accepted); } void channel_show_limit(struct channel_limit *l, const char *dsc) { if (!l->action) return; cli_msg(-1006, " %-16s%d%s", dsc, l->limit, l->state ? " [HIT]" : ""); cli_msg(-1006, " Action: %s", channel_limit_name(l)); } void channel_show_info(struct channel *c) { cli_msg(-1006, " Channel %s", c->name); cli_msg(-1006, " State: %s", c_states[c->channel_state]); cli_msg(-1006, " Table: %s", c->table->name); cli_msg(-1006, " Preference: %d", c->preference); cli_msg(-1006, " Input filter: %s", filter_name(c->in_filter)); cli_msg(-1006, " Output filter: %s", filter_name(c->out_filter)); if (graceful_restart_state == GRS_ACTIVE) cli_msg(-1006, " GR recovery: %s%s", c->gr_lock ? " pending" : "", c->gr_wait ? " waiting" : ""); channel_show_limit(&c->rx_limit, "Receive limit:"); channel_show_limit(&c->in_limit, "Import limit:"); channel_show_limit(&c->out_limit, "Export limit:"); if (c->channel_state != CS_DOWN) channel_show_stats(c); } void channel_cmd_debug(struct channel *c, uint mask) { if (cli_access_restricted()) return; c->debug = mask; cli_msg(0, ""); } void proto_cmd_show(struct proto *p, uintptr_t verbose, int cnt) { byte buf[256], tbuf[TM_DATETIME_BUFFER_SIZE]; /* First protocol - show header */ if (!cnt) cli_msg(-2002, "%-10s %-10s %-10s %-6s %-12s %s", "Name", "Proto", "Table", "State", "Since", "Info"); buf[0] = 0; if (p->proto->get_status) p->proto->get_status(p, buf); tm_format_time(tbuf, &config->tf_proto, p->last_state_change); cli_msg(-1002, "%-10s %-10s %-10s %-6s %-12s %s", p->name, p->proto->name, p->main_channel ? p->main_channel->table->name : "---", proto_state_name(p), tbuf, buf); if (verbose) { if (p->cf->dsc) cli_msg(-1006, " Description: %s", p->cf->dsc); if (p->message) cli_msg(-1006, " Message: %s", p->message); if (p->cf->router_id) cli_msg(-1006, " Router ID: %R", p->cf->router_id); if (p->vrf_set) cli_msg(-1006, " VRF: %s", p->vrf ? p->vrf->name : "default"); if (p->proto->show_proto_info) p->proto->show_proto_info(p); else { struct channel *c; WALK_LIST(c, p->channels) channel_show_info(c); } cli_msg(-1006, ""); } } void proto_cmd_disable(struct proto *p, uintptr_t arg, int cnt UNUSED) { if (p->disabled) { cli_msg(-8, "%s: already disabled", p->name); return; } log(L_INFO "Disabling protocol %s", p->name); p->disabled = 1; p->down_code = PDC_CMD_DISABLE; proto_set_message(p, (char *) arg, -1); proto_rethink_goal(p); cli_msg(-9, "%s: disabled", p->name); } void proto_cmd_enable(struct proto *p, uintptr_t arg, int cnt UNUSED) { if (!p->disabled) { cli_msg(-10, "%s: already enabled", p->name); return; } log(L_INFO "Enabling protocol %s", p->name); p->disabled = 0; proto_set_message(p, (char *) arg, -1); proto_rethink_goal(p); cli_msg(-11, "%s: enabled", p->name); } void proto_cmd_restart(struct proto *p, uintptr_t arg, int cnt UNUSED) { if (p->disabled) { cli_msg(-8, "%s: already disabled", p->name); return; } log(L_INFO "Restarting protocol %s", p->name); p->disabled = 1; p->down_code = PDC_CMD_RESTART; proto_set_message(p, (char *) arg, -1); proto_rethink_goal(p); p->disabled = 0; proto_rethink_goal(p); cli_msg(-12, "%s: restarted", p->name); } void proto_cmd_reload(struct proto *p, uintptr_t dir, int cnt UNUSED) { struct channel *c; if (p->disabled) { cli_msg(-8, "%s: already disabled", p->name); return; } /* If the protocol in not UP, it has no routes */ if (p->proto_state != PS_UP) return; /* All channels must support reload */ if (dir != CMD_RELOAD_OUT) WALK_LIST(c, p->channels) if ((c->channel_state == CS_UP) && !channel_reloadable(c)) { cli_msg(-8006, "%s: reload failed", p->name); return; } log(L_INFO "Reloading protocol %s", p->name); /* re-importing routes */ if (dir != CMD_RELOAD_OUT) WALK_LIST(c, p->channels) if (c->channel_state == CS_UP) channel_request_reload(c); /* re-exporting routes */ if (dir != CMD_RELOAD_IN) WALK_LIST(c, p->channels) if (c->channel_state == CS_UP) channel_request_feeding(c); cli_msg(-15, "%s: reloading", p->name); } extern void pipe_update_debug(struct proto *P); void proto_cmd_debug(struct proto *p, uintptr_t mask, int cnt UNUSED) { p->debug = mask; #ifdef CONFIG_PIPE if (p->proto == &proto_pipe) pipe_update_debug(p); #endif } void proto_cmd_mrtdump(struct proto *p, uintptr_t mask, int cnt UNUSED) { p->mrtdump = mask; } static void proto_apply_cmd_symbol(const struct symbol *s, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg) { if (s->class != SYM_PROTO) { cli_msg(9002, "%s is not a protocol", s->name); return; } if (s->proto->proto) { cmd(s->proto->proto, arg, 0); cli_msg(0, ""); } else cli_msg(9002, "%s does not exist", s->name); } static void proto_apply_cmd_patt(const char *patt, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg) { struct proto *p; int cnt = 0; WALK_LIST(p, proto_list) if (!patt || patmatch(patt, p->name)) cmd(p, arg, cnt++); if (!cnt) cli_msg(8003, "No protocols match"); else cli_msg(0, ""); } void proto_apply_cmd(struct proto_spec ps, void (* cmd)(struct proto *, uintptr_t, int), int restricted, uintptr_t arg) { if (restricted && cli_access_restricted()) return; if (ps.patt) proto_apply_cmd_patt(ps.ptr, cmd, arg); else proto_apply_cmd_symbol(ps.ptr, cmd, arg); } struct proto * proto_get_named(struct symbol *sym, struct protocol *pr) { struct proto *p, *q; if (sym) { if (sym->class != SYM_PROTO) cf_error("%s: Not a protocol", sym->name); p = sym->proto->proto; if (!p || p->proto != pr) cf_error("%s: Not a %s protocol", sym->name, pr->name); } else { p = NULL; WALK_LIST(q, proto_list) if ((q->proto == pr) && (q->proto_state != PS_DOWN)) { if (p) cf_error("There are multiple %s protocols running", pr->name); p = q; } if (!p) cf_error("There is no %s protocol running", pr->name); } return p; } struct proto * proto_iterate_named(struct symbol *sym, struct protocol *proto, struct proto *old) { if (sym) { /* Just the first pass */ if (old) { cli_msg(0, ""); return NULL; } if (sym->class != SYM_PROTO) cf_error("%s: Not a protocol", sym->name); struct proto *p = sym->proto->proto; if (!p || (p->proto != proto)) cf_error("%s: Not a %s protocol", sym->name, proto->name); return p; } else { for (struct proto *p = !old ? HEAD(proto_list) : NODE_NEXT(old); NODE_VALID(p); p = NODE_NEXT(p)) { if ((p->proto == proto) && (p->proto_state != PS_DOWN)) { cli_separator(this_cli); return p; } } /* Not found anything during first pass */ if (!old) cf_error("There is no %s protocol running", proto->name); /* No more items */ cli_msg(0, ""); return NULL; } }