/* * BIRD -- UNIX Kernel Synchronization * * (c) 1998--2000 Martin Mares * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Kernel synchronization * * This system dependent module implements the Kernel and Device protocol, * that is synchronization of interface lists and routing tables with the * OS kernel. * * The whole kernel synchronization is a bit messy and touches some internals * of the routing table engine, because routing table maintenance is a typical * example of the proverbial compatibility between different Unices and we want * to keep the overhead of our KRT business as low as possible and avoid maintaining * a local routing table copy. * * The kernel syncer can work in three different modes (according to system config header): * Either with a single routing table and single KRT protocol [traditional UNIX] * or with many routing tables and separate KRT protocols for all of them * or with many routing tables, but every scan including all tables, so we start * separate KRT protocols which cooperate with each other [Linux]. * In this case, we keep only a single scan timer. * * We use FIB node flags in the routing table to keep track of route * synchronization status. We also attach temporary &rte's to the routing table, * but it cannot do any harm to the rest of BIRD since table synchronization is * an atomic process. * * When starting up, we cheat by looking if there is another * KRT instance to be initialized later and performing table scan * only once for all the instances. * * The code uses OS-dependent parts for kernel updates and scans. These parts are * in more specific sysdep directories (e.g. sysdep/linux) in functions krt_sys_* * and kif_sys_* (and some others like krt_replace_rte()) and krt-sys.h header file. * This is also used for platform specific protocol options and route attributes. * * There was also an old code that used traditional UNIX ioctls for these tasks. * It was unmaintained and later removed. For reference, see sysdep/krt-* files * in commit 396dfa9042305f62da1f56589c4b98fac57fc2f6 */ /* * If you are brave enough, continue now. You cannot say you haven't been warned. */ #undef LOCAL_DEBUG #include "nest/bird.h" #include "nest/iface.h" #include "nest/route.h" #include "nest/protocol.h" #include "filter/filter.h" #include "conf/conf.h" #include "lib/string.h" #include "lib/timer.h" #include "unix.h" #include "krt.h" /* * Global resources */ pool *krt_pool; static linpool *krt_filter_lp; static list krt_proto_list; void krt_io_init(void) { krt_pool = rp_new(&root_pool, "Kernel Syncer"); krt_filter_lp = lp_new_default(krt_pool); init_list(&krt_proto_list); krt_sys_io_init(); } /* * Interfaces */ struct kif_proto *kif_proto; static struct kif_config *kif_cf; static timer *kif_scan_timer; static btime kif_last_shot; static struct kif_iface_config kif_default_iface = {}; struct kif_iface_config * kif_get_iface_config(struct iface *iface) { struct kif_config *cf = (void *) (kif_proto->p.cf); struct kif_iface_config *ic = (void *) iface_patt_find(&cf->iface_list, iface, NULL); return ic ?: &kif_default_iface; } static void kif_scan(timer *t) { struct kif_proto *p = t->data; KRT_TRACE(p, D_EVENTS, "Scanning interfaces"); kif_last_shot = current_time(); kif_do_scan(p); } static void kif_force_scan(void) { if (kif_proto && ((kif_last_shot + 2 S) < current_time())) { kif_scan(kif_scan_timer); tm_start(kif_scan_timer, ((struct kif_config *) kif_proto->p.cf)->scan_time); } } void kif_request_scan(void) { if (kif_proto && (kif_scan_timer->expires > (current_time() + 1 S))) tm_start(kif_scan_timer, 1 S); } static struct proto * kif_init(struct proto_config *c) { struct kif_proto *p = proto_new(c); kif_sys_init(p); return &p->p; } static int kif_start(struct proto *P) { struct kif_proto *p = (struct kif_proto *) P; kif_proto = p; kif_sys_start(p); /* Start periodic interface scanning */ kif_scan_timer = tm_new_init(P->pool, kif_scan, p, KIF_CF->scan_time, 0); kif_scan(kif_scan_timer); tm_start(kif_scan_timer, KIF_CF->scan_time); return PS_UP; } static int kif_shutdown(struct proto *P) { struct kif_proto *p = (struct kif_proto *) P; tm_stop(kif_scan_timer); kif_sys_shutdown(p); kif_proto = NULL; return PS_DOWN; } static int kif_reconfigure(struct proto *p, struct proto_config *new) { struct kif_config *o = (struct kif_config *) p->cf; struct kif_config *n = (struct kif_config *) new; if (!kif_sys_reconfigure((struct kif_proto *) p, n, o)) return 0; if (o->scan_time != n->scan_time) { tm_stop(kif_scan_timer); kif_scan_timer->recurrent = n->scan_time; kif_scan(kif_scan_timer); tm_start(kif_scan_timer, n->scan_time); } if (!EMPTY_LIST(o->iface_list) || !EMPTY_LIST(n->iface_list)) { /* This is hack, we have to update a configuration * to the new value just now, because it is used * for recalculation of preferred addresses. */ p->cf = new; if_recalc_all_preferred_addresses(); } return 1; } static void kif_preconfig(struct protocol *P UNUSED, struct config *c) { kif_cf = NULL; kif_sys_preconfig(c); } struct proto_config * kif_init_config(int class) { if (kif_cf) cf_error("Kernel device protocol already defined"); kif_cf = (struct kif_config *) proto_config_new(&proto_unix_iface, class); kif_cf->scan_time = 60 S; init_list(&kif_cf->iface_list); kif_sys_init_config(kif_cf); return (struct proto_config *) kif_cf; } static void kif_copy_config(struct proto_config *dest, struct proto_config *src) { struct kif_config *d = (struct kif_config *) dest; struct kif_config *s = (struct kif_config *) src; /* Copy interface config list */ cfg_copy_list(&d->iface_list, &s->iface_list, sizeof(struct kif_iface_config)); /* Fix sysdep parts */ kif_sys_copy_config(d, s); } struct protocol proto_unix_iface = { .name = "Device", .template = "device%d", .class = PROTOCOL_DEVICE, .proto_size = sizeof(struct kif_proto), .config_size = sizeof(struct kif_config), .preconfig = kif_preconfig, .init = kif_init, .start = kif_start, .shutdown = kif_shutdown, .reconfigure = kif_reconfigure, .copy_config = kif_copy_config }; /* * Tracing of routes */ static inline void krt_trace_in(struct krt_proto *p, rte *e, char *msg) { if (p->p.debug & D_PACKETS) log(L_TRACE "%s: %N: %s", p->p.name, e->net, msg); } static inline void krt_trace_in_rl(struct tbf *f, struct krt_proto *p, rte *e, char *msg) { if (p->p.debug & D_PACKETS) log_rl(f, L_TRACE "%s: %N: %s", p->p.name, e->net, msg); } /* * Inherited Routes */ #ifdef KRT_ALLOW_LEARN static struct tbf rl_alien = TBF_DEFAULT_LOG_LIMITS; /* * krt_same_key() specifies what (aside from the net) is the key in * kernel routing tables. It should be OS-dependent, this is for * Linux. It is important for asynchronous alien updates, because a * positive update is implicitly a negative one for any old route with * the same key. */ static inline u32 krt_metric(struct rte_storage *a) { eattr *ea = ea_find(a->attrs->eattrs, EA_KRT_METRIC); return ea ? ea->u.data : 0; } static inline int krt_same_key(struct rte_storage *a, struct rte_storage *b) { return (krt_metric(a) == krt_metric(b)); } static inline int krt_uptodate(struct rte_storage *a, struct rte_storage *b) { return (a->attrs == b->attrs); } static void krt_learn_announce_update(struct krt_proto *p, struct rte_storage *e) { rte e0 = { .attrs = e->attrs, .src = p->p.main_source, .net = e->net->n.addr, }; rte_update(p->p.main_channel, &e0); } static void krt_learn_announce_delete(struct krt_proto *p, net_addr *n) { rte_withdraw(p->p.main_channel, n, p->p.main_source); } /* Called when alien route is discovered during scan */ static void krt_learn_scan(struct krt_proto *p, rte *e) { net *n = net_get(&p->krt_table, e->net); struct rte_storage *er = rte_store(e, n); struct rte_storage *m, **mm; for(mm=&n->routes; m = *mm; mm=&m->next) if (krt_same_key(m, er)) break; if (m) { if (krt_uptodate(m, er)) { krt_trace_in_rl(&rl_alien, p, e, "[alien] seen"); rte_free(er); m->pflags |= KRT_REF_SEEN; } else { krt_trace_in(p, e, "[alien] updated"); *mm = m->next; rte_free(m); m = NULL; } } else krt_trace_in(p, e, "[alien] created"); if (!m) { er->next = n->routes; n->routes = er; er->pflags |= KRT_REF_SEEN; } } static void krt_learn_prune(struct krt_proto *p) { struct fib *fib = &p->krt_table.fib; struct fib_iterator fit; KRT_TRACE(p, D_EVENTS, "Pruning inherited routes"); FIB_ITERATE_INIT(&fit, fib); again: FIB_ITERATE_START(fib, &fit, net, n) { struct rte_storage *e, **ee, *best, **pbest, *old_best; /* * Note that old_best may be NULL even if there was an old best route in * the previous step, because it might be replaced in krt_learn_scan(). * But in that case there is a new valid best route. */ old_best = NULL; best = NULL; pbest = NULL; ee = &n->routes; while (e = *ee) { if (e->pflags & KRT_REF_BEST) old_best = e; if (!(e->pflags & KRT_REF_SEEN)) { *ee = e->next; rte_free(e); continue; } if (!best || krt_metric(best) > krt_metric(e)) { best = e; pbest = ee; } e->pflags &= ~(KRT_REF_SEEN | KRT_REF_BEST); ee = &e->next; } if (!n->routes) { DBG("%I/%d: deleting\n", n->n.prefix, n->n.pxlen); if (old_best) krt_learn_announce_delete(p, n->n.addr); FIB_ITERATE_PUT(&fit); fib_delete(fib, n); goto again; } best->pflags |= KRT_REF_BEST; *pbest = best->next; best->next = n->routes; n->routes = best; if ((best != old_best) || p->reload) { DBG("%I/%d: announcing (metric=%d)\n", n->n.prefix, n->n.pxlen, krt_metric(best)); krt_learn_announce_update(p, best); } else DBG("%I/%d: uptodate (metric=%d)\n", n->n.prefix, n->n.pxlen, krt_metric(best)); } FIB_ITERATE_END; p->reload = 0; } static void krt_learn_async(struct krt_proto *p, rte *e, int new) { net *n = net_get(&p->krt_table, e->net); struct rte_storage *g, **gg, *best, **bestp, *old_best; ASSERT(!e->attrs->cached); e->attrs->pref = p->p.main_channel->preference; struct rte_storage *er = rte_store(e, n); old_best = n->routes; for(gg=&n->routes; g = *gg; gg = &g->next) if (krt_same_key(g, er)) break; if (new) { if (g) { if (krt_uptodate(g, er)) { krt_trace_in(p, e, "[alien async] same"); rte_free(er); return; } krt_trace_in(p, e, "[alien async] updated"); *gg = g->next; rte_free(g); } else krt_trace_in(p, e, "[alien async] created"); er->next = n->routes; n->routes = er; } else if (!g) { krt_trace_in(p, e, "[alien async] delete failed"); rte_free(er); return; } else { krt_trace_in(p, e, "[alien async] removed"); *gg = g->next; rte_free(er); rte_free(g); } best = n->routes; bestp = &n->routes; for(gg=&n->routes; g=*gg; gg=&g->next) { if (krt_metric(best) > krt_metric(g)) { best = g; bestp = gg; } g->pflags &= ~KRT_REF_BEST; } if (best) { best->pflags |= KRT_REF_BEST; *bestp = best->next; best->next = n->routes; n->routes = best; } if (best != old_best) { DBG("krt_learn_async: distributing change\n"); if (best) krt_learn_announce_update(p, best); else krt_learn_announce_delete(p, n->n.addr); } } static void krt_learn_init(struct krt_proto *p) { if (KRT_CF->learn) { struct rtable_config *cf = mb_allocz(p->p.pool, sizeof(struct rtable_config)); cf->name = "Inherited"; cf->addr_type = p->p.net_type; rt_setup(p->p.pool, &p->krt_table, cf); } } static void krt_dump(struct proto *P) { struct krt_proto *p = (struct krt_proto *) P; if (!KRT_CF->learn) return; debug("KRT: Table of inheritable routes\n"); rt_dump(&p->krt_table); } #endif /* * Routes */ static inline int krt_is_installed(struct krt_proto *p, net *n) { return n->routes && bmap_test(&p->p.main_channel->export_map, n->routes->id); } static void krt_flush_routes(struct krt_proto *p) { struct rtable *t = p->p.main_channel->table; KRT_TRACE(p, D_EVENTS, "Flushing kernel routes"); FIB_WALK(&t->fib, net, n) { if (krt_is_installed(p, n)) { struct rte_export e = { .old = rte_copy(n->routes), .old_id = n->routes->id, }; /* FIXME: this does not work if gw is changed in export filter */ krt_replace_rte(p, &e); } } FIB_WALK_END; } static _Bool krt_export_net(struct krt_proto *p, net *net, rte *rt) { struct channel *c = p->p.main_channel; const struct filter *filter = c->out_filter; if (c->ra_mode == RA_MERGED) return rt_export_merged(c, net, rt, krt_filter_lp, 1); if (!rte_is_valid(net->routes)) return 0; if (filter == FILTER_REJECT) return 0; /* We could run krt_preexport() here, but it is already handled by krt_is_installed() */ *rt = rte_copy(net->routes); if (filter == FILTER_ACCEPT) return 1; if (f_run(filter, rt, krt_filter_lp, FF_SILENT) > F_ACCEPT) return 0; return 1; } static int krt_same_dest(rte *k, rte *e) { rta *ka = k->attrs, *ea = e->attrs; if (ka->dest != ea->dest) return 0; if (ka->dest == RTD_UNICAST) return nexthop_same(&(ka->nh), &(ea->nh)); return 1; } /* * This gets called back when the low-level scanning code discovers a route. * We expect that the route is a temporary rte and its attributes are uncached. */ void krt_got_route(struct krt_proto *p, rte *e, s8 src) { struct rte_export ex = { .old = *e, }; #ifdef KRT_ALLOW_LEARN switch (src) { case KRT_SRC_KERNEL: goto ignore; case KRT_SRC_REDIRECT: goto delete; case KRT_SRC_ALIEN: if (KRT_CF->learn) krt_learn_scan(p, e); else krt_trace_in_rl(&rl_alien, p, e, "[alien] ignored"); return; } #endif /* The rest is for KRT_SRC_BIRD (or KRT_SRC_UNKNOWN) */ /* We wait for the initial feed to have correct installed state */ if (!p->ready) goto ignore; net *n = net_find(p->p.main_channel->table, e->net); if (!n || !krt_is_installed(p, n)) goto delete; /* Rejected by filters */ if (!krt_export_net(p, n, &ex.new)) goto delete; /* Route to this destination was already seen. Strange, but it happens... */ if (bmap_test(&p->seen_map, n->routes->id)) goto aseen; /* Mark route as seen */ bmap_set(&p->seen_map, n->routes->id); /* TODO: There also may be changes in route eattrs, we ignore that for now. */ if (!bmap_test(&p->sync_map, n->routes->id) || !krt_same_dest(e, &ex.new)) goto update; goto seen; seen: krt_trace_in(p, e, "seen"); goto done; aseen: krt_trace_in(p, e, "already seen"); goto done; ignore: krt_trace_in(p, e, "ignored"); goto done; update: krt_trace_in(p, &ex.new, "updating"); ex.new_id = n->routes->id; krt_replace_rte(p, &ex); goto done; delete: krt_trace_in(p, e, "deleting"); krt_replace_rte(p, &ex); goto done; done: lp_flush(krt_filter_lp); } static void krt_init_scan(struct krt_proto *p) { bmap_reset(&p->seen_map, 1024); } static void krt_prune(struct krt_proto *p) { struct rtable *t = p->p.main_channel->table; KRT_TRACE(p, D_EVENTS, "Pruning table %s", t->name); FIB_WALK(&t->fib, net, n) { if (p->ready && krt_is_installed(p, n) && !bmap_test(&p->seen_map, n->routes->id)) { struct rte_export ex = { .new_id = n->routes->id }; if (krt_export_net(p, n, &ex.new)) { krt_trace_in(p, &ex.new, "installing"); krt_replace_rte(p, &ex); } lp_flush(krt_filter_lp); } } FIB_WALK_END; #ifdef KRT_ALLOW_LEARN if (KRT_CF->learn) krt_learn_prune(p); #endif if (p->ready) p->initialized = 1; } void krt_got_route_async(struct krt_proto *p, rte *e, int new, s8 src) { switch (src) { case KRT_SRC_BIRD: /* Should be filtered by the back end */ bug("BIRD originated routes should not get here."); case KRT_SRC_REDIRECT: if (new) { krt_trace_in(p, e, "[redirect] deleting"); struct rte_export ex = { .old = *e }; krt_replace_rte(p, &ex); } /* If !new, it is probably echo of our deletion */ break; #ifdef KRT_ALLOW_LEARN case KRT_SRC_ALIEN: if (KRT_CF->learn) { krt_learn_async(p, e, new); return; } #endif } } /* * Periodic scanning */ #ifdef CONFIG_ALL_TABLES_AT_ONCE static timer *krt_scan_timer; static int krt_scan_count; static void krt_scan(timer *t UNUSED) { struct krt_proto *p; node *n; kif_force_scan(); /* We need some node to decide whether to print the debug messages or not */ p = SKIP_BACK(struct krt_proto, krt_node, HEAD(krt_proto_list)); KRT_TRACE(p, D_EVENTS, "Scanning routing table"); WALK_LIST2(p, n, krt_proto_list, krt_node) krt_init_scan(p); krt_do_scan(NULL); WALK_LIST2(p, n, krt_proto_list, krt_node) krt_prune(p); } static void krt_scan_timer_start(struct krt_proto *p) { if (!krt_scan_count) krt_scan_timer = tm_new_init(krt_pool, krt_scan, NULL, KRT_CF->scan_time, 0); krt_scan_count++; tm_start(krt_scan_timer, 1 S); } static void krt_scan_timer_stop(struct krt_proto *p UNUSED) { krt_scan_count--; if (!krt_scan_count) { rfree(krt_scan_timer); krt_scan_timer = NULL; } } static void krt_scan_timer_kick(struct krt_proto *p UNUSED) { tm_start(krt_scan_timer, 0); } #else static void krt_scan(timer *t) { struct krt_proto *p = t->data; kif_force_scan(); KRT_TRACE(p, D_EVENTS, "Scanning routing table"); krt_init_scan(p); krt_do_scan(p); krt_prune(p); } static void krt_scan_timer_start(struct krt_proto *p) { p->scan_timer = tm_new_init(p->p.pool, krt_scan, p, KRT_CF->scan_time, 0); tm_start(p->scan_timer, 1 S); } static void krt_scan_timer_stop(struct krt_proto *p) { tm_stop(p->scan_timer); } static void krt_scan_timer_kick(struct krt_proto *p) { tm_start(p->scan_timer, 0); } #endif /* * Updates */ static int krt_preexport(struct channel *c, rte *e) { if (e->src->proto == c->proto) return -1; if (!krt_capable(e)) return -1; return 0; } static void krt_rt_notify(struct channel *ch, struct rte_export *e) { struct krt_proto *p = (struct krt_proto *) ch->proto; if (config->shutdown) return; #ifdef CONFIG_SINGLE_ROUTE /* * Implicit withdraw - when the imported kernel route becomes the best one, * we know that the previous one exported to the kernel was already removed, * but if we processed the update as usual, we would send withdraw to the * kernel, which would remove the new imported route instead. */ if (!e->new.attrs && (e->new.src->proto == ch->proto)) return; #endif if (p->initialized) /* Before first scan we don't touch the routes */ krt_replace_rte(p, e); } static void krt_if_notify(struct proto *P, uint flags, struct iface *iface UNUSED) { struct krt_proto *p = (struct krt_proto *) P; /* * When interface went down, we should remove routes to it. In the ideal world, * OS kernel would send us route removal notifications in such cases, but we * cannot rely on it as it is often not true. E.g. Linux kernel removes related * routes when an interface went down, but it does not notify userspace about * that. To be sure, we just schedule a scan to ensure synchronization. */ if ((flags & IF_CHANGE_DOWN) && KRT_CF->learn) krt_scan_timer_kick(p); } static void krt_reload_routes(struct channel *C) { struct krt_proto *p = (void *) C->proto; /* Although we keep learned routes in krt_table, we rather schedule a scan */ if (KRT_CF->learn) { p->reload = 1; krt_scan_timer_kick(p); } } static void krt_feed_end(struct channel *C) { struct krt_proto *p = (void *) C->proto; p->ready = 1; krt_scan_timer_kick(p); } /* * Protocol glue */ struct krt_config *krt_cf; static void krt_preconfig(struct protocol *P UNUSED, struct config *c) { krt_cf = NULL; krt_sys_preconfig(c); } static void krt_postconfig(struct proto_config *CF) { struct krt_config *cf = (void *) CF; if (EMPTY_LIST(CF->channels)) cf_error("Channel not specified"); #ifdef CONFIG_ALL_TABLES_AT_ONCE if (krt_cf->scan_time != cf->scan_time) cf_error("All kernel syncers must use the same table scan interval"); #endif struct channel_config *cc = proto_cf_main_channel(CF); struct rtable_config *tab = cc->table; if (tab->krt_attached) cf_error("Kernel syncer (%s) already attached to table %s", tab->krt_attached->name, tab->name); tab->krt_attached = CF; if (cf->merge_paths) { cc->ra_mode = RA_MERGED; cc->merge_limit = cf->merge_paths; } krt_sys_postconfig(cf); } static struct proto * krt_init(struct proto_config *CF) { struct krt_proto *p = proto_new(CF); // struct krt_config *cf = (void *) CF; p->p.main_channel = proto_add_channel(&p->p, proto_cf_main_channel(CF)); p->p.preexport = krt_preexport; p->p.rt_notify = krt_rt_notify; p->p.if_notify = krt_if_notify; p->p.reload_routes = krt_reload_routes; p->p.feed_end = krt_feed_end; krt_sys_init(p); return &p->p; } static int krt_start(struct proto *P) { struct krt_proto *p = (struct krt_proto *) P; switch (p->p.net_type) { case NET_IP4: p->af = AF_INET; break; case NET_IP6: p->af = AF_INET6; break; case NET_IP6_SADR: p->af = AF_INET6; break; #ifdef AF_MPLS case NET_MPLS: p->af = AF_MPLS; break; #endif default: log(L_ERR "KRT: Tried to start with strange net type: %d", p->p.net_type); return PS_START; break; } /* If it is needed, setup out table automagically */ if (!TRIVIAL_FILTER(p->p.main_channel->out_filter)) channel_setup_out_table(p->p.main_channel); bmap_init(&p->sync_map, p->p.pool, 1024); bmap_init(&p->seen_map, p->p.pool, 1024); add_tail(&krt_proto_list, &p->krt_node); #ifdef KRT_ALLOW_LEARN krt_learn_init(p); #endif if (!krt_sys_start(p)) { rem_node(&p->krt_node); return PS_START; } krt_scan_timer_start(p); if (p->p.gr_recovery && KRT_CF->graceful_restart) p->p.main_channel->gr_wait = 1; return PS_UP; } static int krt_shutdown(struct proto *P) { struct krt_proto *p = (struct krt_proto *) P; krt_scan_timer_stop(p); /* FIXME we should flush routes even when persist during reconfiguration */ if (p->initialized && !KRT_CF->persist && (P->down_code != PDC_CMD_GR_DOWN)) krt_flush_routes(p); p->ready = 0; p->initialized = 0; if (p->p.proto_state == PS_START) return PS_DOWN; krt_sys_shutdown(p); rem_node(&p->krt_node); bmap_free(&p->sync_map); return PS_DOWN; } static int krt_channel_reconfigure(struct channel *C, struct channel_config *CC, int *import_changed UNUSED, int *export_changed) { if (!*export_changed) return 1; return (TRIVIAL_FILTER(C->out_filter) == TRIVIAL_FILTER(CC->out_filter)); } static int krt_reconfigure(struct proto *p, struct proto_config *CF) { struct krt_config *o = (void *) p->cf; struct krt_config *n = (void *) CF; if (!proto_configure_channel(p, &p->main_channel, proto_cf_main_channel(CF))) return 0; if (!krt_sys_reconfigure((struct krt_proto *) p, n, o)) return 0; /* persist, graceful restart need not be the same */ return o->scan_time == n->scan_time && o->learn == n->learn; } struct proto_config * krt_init_config(int class) { #ifndef CONFIG_MULTIPLE_TABLES if (krt_cf) cf_error("Kernel protocol already defined"); #endif krt_cf = (struct krt_config *) proto_config_new(&proto_unix_kernel, class); krt_cf->scan_time = 60 S; krt_sys_init_config(krt_cf); return (struct proto_config *) krt_cf; } static void krt_copy_config(struct proto_config *dest, struct proto_config *src) { struct krt_config *d = (struct krt_config *) dest; struct krt_config *s = (struct krt_config *) src; /* Fix sysdep parts */ krt_sys_copy_config(d, s); } static int krt_get_attr(const eattr *a, byte *buf, int buflen) { switch (a->id) { case EA_KRT_SOURCE: bsprintf(buf, "source"); return GA_NAME; case EA_KRT_METRIC: bsprintf(buf, "metric"); return GA_NAME; default: return krt_sys_get_attr(a, buf, buflen); } } #ifdef CONFIG_IP6_SADR_KERNEL #define MAYBE_IP6_SADR NB_IP6_SADR #else #define MAYBE_IP6_SADR 0 #endif #ifdef HAVE_MPLS_KERNEL #define MAYBE_MPLS NB_MPLS #else #define MAYBE_MPLS 0 #endif struct channel_class channel_krt = { .channel_size = sizeof(struct channel), .config_size = sizeof(struct channel_config), .reconfigure = krt_channel_reconfigure, }; struct protocol proto_unix_kernel = { .name = "Kernel", .template = "kernel%d", .class = PROTOCOL_KERNEL, .preference = DEF_PREF_INHERITED, .channel_mask = NB_IP | MAYBE_IP6_SADR | MAYBE_MPLS, .proto_size = sizeof(struct krt_proto), .config_size = sizeof(struct krt_config), .preconfig = krt_preconfig, .postconfig = krt_postconfig, .init = krt_init, .start = krt_start, .shutdown = krt_shutdown, .reconfigure = krt_reconfigure, .copy_config = krt_copy_config, .get_attr = krt_get_attr, #ifdef KRT_ALLOW_LEARN .dump = krt_dump, #endif };