/* * BIRD Library -- SHA-512 and SHA-384 Hash Functions, * HMAC-SHA-512 and HMAC-SHA-384 Functions * * (c) 2015 CZ.NIC z.s.p.o. * * Based on the code from libgcrypt-1.6.0, which is * (c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc. * * Can be freely distributed and used under the terms of the GNU GPL. */ #include "lib/sha256.h" #include "lib/sha512.h" #include "lib/unaligned.h" static uint sha512_transform(void *context, const byte *data, size_t nblks); void sha512_init(struct sha512_context *ctx) { struct sha512_state *hd = &ctx->state; hd->h0 = UINT64_C(0x6a09e667f3bcc908); hd->h1 = UINT64_C(0xbb67ae8584caa73b); hd->h2 = UINT64_C(0x3c6ef372fe94f82b); hd->h3 = UINT64_C(0xa54ff53a5f1d36f1); hd->h4 = UINT64_C(0x510e527fade682d1); hd->h5 = UINT64_C(0x9b05688c2b3e6c1f); hd->h6 = UINT64_C(0x1f83d9abfb41bd6b); hd->h7 = UINT64_C(0x5be0cd19137e2179); ctx->bctx.nblocks = 0; ctx->bctx.nblocks_high = 0; ctx->bctx.count = 0; ctx->bctx.blocksize = 128; ctx->bctx.transform = sha512_transform; } void sha384_init(struct sha384_context *ctx) { struct sha512_state *hd = &ctx->state; hd->h0 = UINT64_C(0xcbbb9d5dc1059ed8); hd->h1 = UINT64_C(0x629a292a367cd507); hd->h2 = UINT64_C(0x9159015a3070dd17); hd->h3 = UINT64_C(0x152fecd8f70e5939); hd->h4 = UINT64_C(0x67332667ffc00b31); hd->h5 = UINT64_C(0x8eb44a8768581511); hd->h6 = UINT64_C(0xdb0c2e0d64f98fa7); hd->h7 = UINT64_C(0x47b5481dbefa4fa4); ctx->bctx.nblocks = 0; ctx->bctx.nblocks_high = 0; ctx->bctx.count = 0; ctx->bctx.blocksize = 128; ctx->bctx.transform = sha512_transform; } void sha512_update(struct sha512_context *ctx, const byte *in_buf, size_t in_len) { sha256_update(&ctx->bctx, in_buf, in_len); } static inline u64 ROTR(u64 x, u64 n) { return ((x >> n) | (x << (64 - n))); } static inline u64 Ch(u64 x, u64 y, u64 z) { return ((x & y) ^ ( ~x & z)); } static inline u64 Maj(u64 x, u64 y, u64 z) { return ((x & y) ^ (x & z) ^ (y & z)); } static inline u64 Sum0(u64 x) { return (ROTR (x, 28) ^ ROTR (x, 34) ^ ROTR (x, 39)); } static inline u64 Sum1 (u64 x) { return (ROTR (x, 14) ^ ROTR (x, 18) ^ ROTR (x, 41)); } static const u64 k[] = { UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817) }; /* * Transform the message W which consists of 16 64-bit-words */ static uint sha512_transform_block(struct sha512_state *hd, const byte *data) { u64 a, b, c, d, e, f, g, h; u64 w[16]; int t; /* get values from the chaining vars */ a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; f = hd->h5; g = hd->h6; h = hd->h7; for ( t = 0; t < 16; t++ ) w[t] = get_u64(data + t * 8); #define S0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) #define S1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) for (t = 0; t < 80 - 16; ) { u64 t1, t2; /* Performance on a AMD Athlon(tm) Dual Core Processor 4050e with gcc 4.3.3 using gcry_md_hash_buffer of each 10000 bytes initialized to 0,1,2,3...255,0,... and 1000 iterations: Not unrolled with macros: 440ms Unrolled with macros: 350ms Unrolled with inline: 330ms */ #if 0 /* Not unrolled. */ t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[t%16]; w[t%16] += S1 (w[(t - 2)%16]) + w[(t - 7)%16] + S0 (w[(t - 15)%16]); t2 = Sum0 (a) + Maj(a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; t++; #else /* Unrolled to interweave the chain variables. */ t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[0]; w[0] += S1 (w[14]) + w[9] + S0 (w[1]); t2 = Sum0 (a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+1] + w[1]; w[1] += S1 (w[15]) + w[10] + S0 (w[2]); t2 = Sum0 (h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+2] + w[2]; w[2] += S1 (w[0]) + w[11] + S0 (w[3]); t2 = Sum0 (g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+3] + w[3]; w[3] += S1 (w[1]) + w[12] + S0 (w[4]); t2 = Sum0 (f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+4] + w[4]; w[4] += S1 (w[2]) + w[13] + S0 (w[5]); t2 = Sum0 (e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+5] + w[5]; w[5] += S1 (w[3]) + w[14] + S0 (w[6]); t2 = Sum0 (d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+6] + w[6]; w[6] += S1 (w[4]) + w[15] + S0 (w[7]); t2 = Sum0 (c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+7] + w[7]; w[7] += S1 (w[5]) + w[0] + S0 (w[8]); t2 = Sum0 (b) + Maj(b, c, d); e += t1; a = t1 + t2; t1 = h + Sum1 (e) + Ch(e, f, g) + k[t+8] + w[8]; w[8] += S1 (w[6]) + w[1] + S0 (w[9]); t2 = Sum0 (a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+9] + w[9]; w[9] += S1 (w[7]) + w[2] + S0 (w[10]); t2 = Sum0 (h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+10] + w[10]; w[10] += S1 (w[8]) + w[3] + S0 (w[11]); t2 = Sum0 (g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+11] + w[11]; w[11] += S1 (w[9]) + w[4] + S0 (w[12]); t2 = Sum0 (f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+12] + w[12]; w[12] += S1 (w[10]) + w[5] + S0 (w[13]); t2 = Sum0 (e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+13] + w[13]; w[13] += S1 (w[11]) + w[6] + S0 (w[14]); t2 = Sum0 (d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+14] + w[14]; w[14] += S1 (w[12]) + w[7] + S0 (w[15]); t2 = Sum0 (c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+15] + w[15]; w[15] += S1 (w[13]) + w[8] + S0 (w[0]); t2 = Sum0 (b) + Maj(b, c, d); e += t1; a = t1 + t2; t += 16; #endif } for (; t < 80; ) { u64 t1, t2; #if 0 /* Not unrolled. */ t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[t%16]; t2 = Sum0 (a) + Maj(a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; t++; #else /* Unrolled to interweave the chain variables. */ t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[0]; t2 = Sum0 (a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+1] + w[1]; t2 = Sum0 (h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+2] + w[2]; t2 = Sum0 (g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+3] + w[3]; t2 = Sum0 (f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+4] + w[4]; t2 = Sum0 (e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+5] + w[5]; t2 = Sum0 (d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+6] + w[6]; t2 = Sum0 (c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+7] + w[7]; t2 = Sum0 (b) + Maj(b, c, d); e += t1; a = t1 + t2; t1 = h + Sum1 (e) + Ch(e, f, g) + k[t+8] + w[8]; t2 = Sum0 (a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+9] + w[9]; t2 = Sum0 (h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+10] + w[10]; t2 = Sum0 (g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+11] + w[11]; t2 = Sum0 (f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+12] + w[12]; t2 = Sum0 (e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+13] + w[13]; t2 = Sum0 (d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+14] + w[14]; t2 = Sum0 (c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+15] + w[15]; t2 = Sum0 (b) + Maj(b, c, d); e += t1; a = t1 + t2; t += 16; #endif } /* Update chaining vars. */ hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; hd->h5 += f; hd->h6 += g; hd->h7 += h; return /* burn_stack */ (8 + 16) * sizeof(u64) + sizeof(u32) + 3 * sizeof(void*); } static uint sha512_transform(void *context, const byte *data, size_t nblks) { struct sha512_context *ctx = context; uint burn; do { burn = sha512_transform_block(&ctx->state, data) + 3 * sizeof(void*); data += 128; } while(--nblks); return burn; } /* The routine final terminates the computation and * returns the digest. * The handle is prepared for a new cycle, but adding bytes to the * handle will the destroy the returned buffer. * Returns: 64 bytes representing the digest. When used for sha384, * we take the leftmost 48 of those bytes. */ byte * sha512_final(struct sha512_context *ctx) { u64 t, th, msb, lsb; byte *p; sha256_update(&ctx->bctx, NULL, 0); /* flush */ ; t = ctx->bctx.nblocks; /* if (sizeof t == sizeof ctx->bctx.nblocks) */ th = ctx->bctx.nblocks_high; /* else */ /* th = ctx->bctx.nblocks >> 64; In case we ever use u128 */ /* multiply by 128 to make a byte count */ lsb = t << 7; msb = (th << 7) | (t >> 57); /* add the count */ t = lsb; if ((lsb += ctx->bctx.count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 61; if (ctx->bctx.count < 112) { /* enough room */ ctx->bctx.buf[ctx->bctx.count++] = 0x80; /* pad */ while(ctx->bctx.count < 112) ctx->bctx.buf[ctx->bctx.count++] = 0; /* pad */ } else { /* need one extra block */ ctx->bctx.buf[ctx->bctx.count++] = 0x80; /* pad character */ while(ctx->bctx.count < 128) ctx->bctx.buf[ctx->bctx.count++] = 0; sha256_update(&ctx->bctx, NULL, 0); /* flush */ ; memset(ctx->bctx.buf, 0, 112); /* fill next block with zeroes */ } /* append the 128 bit count */ put_u64(ctx->bctx.buf + 112, msb); put_u64(ctx->bctx.buf + 120, lsb); sha512_transform(ctx, ctx->bctx.buf, 1); p = ctx->bctx.buf; #define X(a) do { put_u64(p, ctx->state.h##a); p += 8; } while(0) X (0); X (1); X (2); X (3); X (4); X (5); /* Note that these last two chunks are included even for SHA384. We just ignore them. */ X (6); X (7); #undef X return ctx->bctx.buf; } /* * SHA512-HMAC */ static void sha512_hash_buffer(byte *outbuf, const byte *buffer, size_t length) { struct sha512_context hd_tmp; sha512_init(&hd_tmp); sha512_update(&hd_tmp, buffer, length); memcpy(outbuf, sha512_final(&hd_tmp), SHA512_SIZE); } void sha512_hmac_init(struct sha512_hmac_context *ctx, const byte *key, size_t keylen) { byte keybuf[SHA512_BLOCK_SIZE], buf[SHA512_BLOCK_SIZE]; /* Hash the key if necessary */ if (keylen <= SHA512_BLOCK_SIZE) { memcpy(keybuf, key, keylen); bzero(keybuf + keylen, SHA512_BLOCK_SIZE - keylen); } else { sha512_hash_buffer(keybuf, key, keylen); bzero(keybuf + SHA512_SIZE, SHA512_BLOCK_SIZE - SHA512_SIZE); } /* Initialize the inner digest */ sha512_init(&ctx->ictx); int i; for (i = 0; i < SHA512_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x36; sha512_update(&ctx->ictx, buf, SHA512_BLOCK_SIZE); /* Initialize the outer digest */ sha512_init(&ctx->octx); for (i = 0; i < SHA512_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x5c; sha512_update(&ctx->octx, buf, SHA512_BLOCK_SIZE); } void sha512_hmac_update(struct sha512_hmac_context *ctx, const byte *buf, size_t buflen) { /* Just update the inner digest */ sha512_update(&ctx->ictx, buf, buflen); } byte *sha512_hmac_final(struct sha512_hmac_context *ctx) { /* Finish the inner digest */ byte *isha = sha512_final(&ctx->ictx); /* Finish the outer digest */ sha512_update(&ctx->octx, isha, SHA512_SIZE); return sha512_final(&ctx->octx); } /* * SHA384-HMAC */ static void sha384_hash_buffer(byte *outbuf, const byte *buffer, size_t length) { struct sha384_context hd_tmp; sha384_init(&hd_tmp); sha384_update(&hd_tmp, buffer, length); memcpy(outbuf, sha384_final(&hd_tmp), SHA384_SIZE); } void sha384_hmac_init(struct sha384_hmac_context *ctx, const byte *key, size_t keylen) { byte keybuf[SHA384_BLOCK_SIZE], buf[SHA384_BLOCK_SIZE]; /* Hash the key if necessary */ if (keylen <= SHA384_BLOCK_SIZE) { memcpy(keybuf, key, keylen); bzero(keybuf + keylen, SHA384_BLOCK_SIZE - keylen); } else { sha384_hash_buffer(keybuf, key, keylen); bzero(keybuf + SHA384_SIZE, SHA384_BLOCK_SIZE - SHA384_SIZE); } /* Initialize the inner digest */ sha384_init(&ctx->ictx); int i; for (i = 0; i < SHA384_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x36; sha384_update(&ctx->ictx, buf, SHA384_BLOCK_SIZE); /* Initialize the outer digest */ sha384_init(&ctx->octx); for (i = 0; i < SHA384_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x5c; sha384_update(&ctx->octx, buf, SHA384_BLOCK_SIZE); } void sha384_hmac_update(struct sha384_hmac_context *ctx, const byte *buf, size_t buflen) { /* Just update the inner digest */ sha384_update(&ctx->ictx, buf, buflen); } byte *sha384_hmac_final(struct sha384_hmac_context *ctx) { /* Finish the inner digest */ byte *isha = sha384_final(&ctx->ictx); /* Finish the outer digest */ sha384_update(&ctx->octx, isha, SHA384_SIZE); return sha384_final(&ctx->octx); }