/* * BIRD Library -- SHA-1 Hash Function (FIPS 180-1, RFC 3174) and HMAC-SHA-1 * * (c) 2015 CZ.NIC z.s.p.o. * * Based on the code from libucw-6.4 * (c) 2008--2009 Martin Mares * * Based on the code from libgcrypt-1.2.3, which is * (c) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. * * Can be freely distributed and used under the terms of the GNU GPL. */ #include "lib/sha1.h" #include "lib/unaligned.h" void sha1_init(struct sha1_context *hd) { hd->h0 = 0x67452301; hd->h1 = 0xefcdab89; hd->h2 = 0x98badcfe; hd->h3 = 0x10325476; hd->h4 = 0xc3d2e1f0; hd->nblocks = 0; hd->count = 0; } /* * Transform the message X which consists of 16 32-bit-words */ static void sha1_transform(struct sha1_context *hd, const byte *data) { u32 a,b,c,d,e,tm; u32 x[16]; /* Get values from the chaining vars. */ a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; #ifdef CPU_BIG_ENDIAN memcpy(x, data, 64); #else int i; for (i = 0; i < 16; i++) x[i] = get_u32(data+4*i); #endif #define K1 0x5A827999L #define K2 0x6ED9EBA1L #define K3 0x8F1BBCDCL #define K4 0xCA62C1D6L #define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) #define F2(x,y,z) ( x ^ y ^ z ) #define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) #define F4(x,y,z) ( x ^ y ^ z ) #define M(i) (tm = x[i&0x0f] ^ x[(i-14)&0x0f] ^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f], (x[i&0x0f] = ROL(tm, 1))) /* Bitwise rotation of an unsigned int to the left **/ #define ROL(x, bits) (((x) << (bits)) | ((uint)(x) >> (sizeof(uint)*8 - (bits)))) #define R(a, b, c, d, e, f, k, m) \ do \ { \ e += ROL(a, 5) + f(b, c, d) + k + m; \ b = ROL( b, 30 ); \ } while(0) R( a, b, c, d, e, F1, K1, x[ 0] ); R( e, a, b, c, d, F1, K1, x[ 1] ); R( d, e, a, b, c, F1, K1, x[ 2] ); R( c, d, e, a, b, F1, K1, x[ 3] ); R( b, c, d, e, a, F1, K1, x[ 4] ); R( a, b, c, d, e, F1, K1, x[ 5] ); R( e, a, b, c, d, F1, K1, x[ 6] ); R( d, e, a, b, c, F1, K1, x[ 7] ); R( c, d, e, a, b, F1, K1, x[ 8] ); R( b, c, d, e, a, F1, K1, x[ 9] ); R( a, b, c, d, e, F1, K1, x[10] ); R( e, a, b, c, d, F1, K1, x[11] ); R( d, e, a, b, c, F1, K1, x[12] ); R( c, d, e, a, b, F1, K1, x[13] ); R( b, c, d, e, a, F1, K1, x[14] ); R( a, b, c, d, e, F1, K1, x[15] ); R( e, a, b, c, d, F1, K1, M(16) ); R( d, e, a, b, c, F1, K1, M(17) ); R( c, d, e, a, b, F1, K1, M(18) ); R( b, c, d, e, a, F1, K1, M(19) ); R( a, b, c, d, e, F2, K2, M(20) ); R( e, a, b, c, d, F2, K2, M(21) ); R( d, e, a, b, c, F2, K2, M(22) ); R( c, d, e, a, b, F2, K2, M(23) ); R( b, c, d, e, a, F2, K2, M(24) ); R( a, b, c, d, e, F2, K2, M(25) ); R( e, a, b, c, d, F2, K2, M(26) ); R( d, e, a, b, c, F2, K2, M(27) ); R( c, d, e, a, b, F2, K2, M(28) ); R( b, c, d, e, a, F2, K2, M(29) ); R( a, b, c, d, e, F2, K2, M(30) ); R( e, a, b, c, d, F2, K2, M(31) ); R( d, e, a, b, c, F2, K2, M(32) ); R( c, d, e, a, b, F2, K2, M(33) ); R( b, c, d, e, a, F2, K2, M(34) ); R( a, b, c, d, e, F2, K2, M(35) ); R( e, a, b, c, d, F2, K2, M(36) ); R( d, e, a, b, c, F2, K2, M(37) ); R( c, d, e, a, b, F2, K2, M(38) ); R( b, c, d, e, a, F2, K2, M(39) ); R( a, b, c, d, e, F3, K3, M(40) ); R( e, a, b, c, d, F3, K3, M(41) ); R( d, e, a, b, c, F3, K3, M(42) ); R( c, d, e, a, b, F3, K3, M(43) ); R( b, c, d, e, a, F3, K3, M(44) ); R( a, b, c, d, e, F3, K3, M(45) ); R( e, a, b, c, d, F3, K3, M(46) ); R( d, e, a, b, c, F3, K3, M(47) ); R( c, d, e, a, b, F3, K3, M(48) ); R( b, c, d, e, a, F3, K3, M(49) ); R( a, b, c, d, e, F3, K3, M(50) ); R( e, a, b, c, d, F3, K3, M(51) ); R( d, e, a, b, c, F3, K3, M(52) ); R( c, d, e, a, b, F3, K3, M(53) ); R( b, c, d, e, a, F3, K3, M(54) ); R( a, b, c, d, e, F3, K3, M(55) ); R( e, a, b, c, d, F3, K3, M(56) ); R( d, e, a, b, c, F3, K3, M(57) ); R( c, d, e, a, b, F3, K3, M(58) ); R( b, c, d, e, a, F3, K3, M(59) ); R( a, b, c, d, e, F4, K4, M(60) ); R( e, a, b, c, d, F4, K4, M(61) ); R( d, e, a, b, c, F4, K4, M(62) ); R( c, d, e, a, b, F4, K4, M(63) ); R( b, c, d, e, a, F4, K4, M(64) ); R( a, b, c, d, e, F4, K4, M(65) ); R( e, a, b, c, d, F4, K4, M(66) ); R( d, e, a, b, c, F4, K4, M(67) ); R( c, d, e, a, b, F4, K4, M(68) ); R( b, c, d, e, a, F4, K4, M(69) ); R( a, b, c, d, e, F4, K4, M(70) ); R( e, a, b, c, d, F4, K4, M(71) ); R( d, e, a, b, c, F4, K4, M(72) ); R( c, d, e, a, b, F4, K4, M(73) ); R( b, c, d, e, a, F4, K4, M(74) ); R( a, b, c, d, e, F4, K4, M(75) ); R( e, a, b, c, d, F4, K4, M(76) ); R( d, e, a, b, c, F4, K4, M(77) ); R( c, d, e, a, b, F4, K4, M(78) ); R( b, c, d, e, a, F4, K4, M(79) ); /* Update chaining vars. */ hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; } /* * Update the message digest with the contents * of INBUF with length INLEN. */ void sha1_update(struct sha1_context *hd, const byte *inbuf, uint inlen) { if (hd->count == 64) /* flush the buffer */ { sha1_transform(hd, hd->buf); hd->count = 0; hd->nblocks++; } if (!inbuf) return; if (hd->count) { for (; inlen && hd->count < 64; inlen--) hd->buf[hd->count++] = *inbuf++; sha1_update( hd, NULL, 0 ); if(!inlen) return; } while (inlen >= 64) { sha1_transform(hd, inbuf); hd->count = 0; hd->nblocks++; inlen -= 64; inbuf += 64; } for (; inlen && hd->count < 64; inlen--) hd->buf[hd->count++] = *inbuf++; } /* * The routine final terminates the computation and * returns the digest. * The handle is prepared for a new cycle, but adding bytes to the * handle will the destroy the returned buffer. * Returns: 20 bytes representing the digest. */ byte * sha1_final(struct sha1_context *hd) { u32 t, msb, lsb; u32 *p; sha1_update(hd, NULL, 0); /* flush */; t = hd->nblocks; /* multiply by 64 to make a byte count */ lsb = t << 6; msb = t >> 26; /* add the count */ t = lsb; if ((lsb += hd->count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if (hd->count < 56) /* enough room */ { hd->buf[hd->count++] = 0x80; /* pad */ while (hd->count < 56) hd->buf[hd->count++] = 0; /* pad */ } else /* need one extra block */ { hd->buf[hd->count++] = 0x80; /* pad character */ while (hd->count < 64) hd->buf[hd->count++] = 0; sha1_update(hd, NULL, 0); /* flush */; memset(hd->buf, 0, 56 ); /* fill next block with zeroes */ } /* append the 64 bit count */ hd->buf[56] = msb >> 24; hd->buf[57] = msb >> 16; hd->buf[58] = msb >> 8; hd->buf[59] = msb ; hd->buf[60] = lsb >> 24; hd->buf[61] = lsb >> 16; hd->buf[62] = lsb >> 8; hd->buf[63] = lsb ; sha1_transform(hd, hd->buf); p = (u32*) hd->buf; #define X(a) do { put_u32(p, hd->h##a); p++; } while(0) X(0); X(1); X(2); X(3); X(4); #undef X return hd->buf; } /* * SHA1-HMAC */ /* * Shortcut function which puts the hash value of the supplied buffer * into outbuf which must have a size of 20 bytes. */ void sha1_hash_buffer(byte *outbuf, const byte *buffer, uint length) { struct sha1_context ctx; sha1_init(&ctx); sha1_update(&ctx, buffer, length); memcpy(outbuf, sha1_final(&ctx), SHA1_SIZE); } void sha1_hmac_init(struct sha1_hmac_context *ctx, const byte *key, uint keylen) { byte keybuf[SHA1_BLOCK_SIZE], buf[SHA1_BLOCK_SIZE]; /* Hash the key if necessary */ if (keylen <= SHA1_BLOCK_SIZE) { memcpy(keybuf, key, keylen); bzero(keybuf + keylen, SHA1_BLOCK_SIZE - keylen); } else { sha1_hash_buffer(keybuf, key, keylen); bzero(keybuf + SHA1_SIZE, SHA1_BLOCK_SIZE - SHA1_SIZE); } /* Initialize the inner digest */ sha1_init(&ctx->ictx); int i; for (i = 0; i < SHA1_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x36; sha1_update(&ctx->ictx, buf, SHA1_BLOCK_SIZE); /* Initialize the outer digest */ sha1_init(&ctx->octx); for (i = 0; i < SHA1_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x5c; sha1_update(&ctx->octx, buf, SHA1_BLOCK_SIZE); } void sha1_hmac_update(struct sha1_hmac_context *ctx, const byte *data, uint datalen) { /* Just update the inner digest */ sha1_update(&ctx->ictx, data, datalen); } byte *sha1_hmac_final(struct sha1_hmac_context *ctx) { /* Finish the inner digest */ byte *isha = sha1_final(&ctx->ictx); /* Finish the outer digest */ sha1_update(&ctx->octx, isha, SHA1_SIZE); return sha1_final(&ctx->octx); } void sha1_hmac(byte *outbuf, const byte *key, uint keylen, const byte *data, uint datalen) { struct sha1_hmac_context hd; sha1_hmac_init(&hd, key, keylen); sha1_hmac_update(&hd, data, datalen); byte *osha = sha1_hmac_final(&hd); memcpy(outbuf, osha, SHA1_SIZE); }