/* * BIRD -- Forwarding Information Base -- Data Structures * * (c) 1998--2000 Martin Mares * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Forwarding Information Base * * FIB is a data structure designed for storage of routes indexed by their * network prefixes. It supports insertion, deletion, searching by prefix, * `routing' (in CIDR sense, that is searching for a longest prefix matching * a given IP address) and (which makes the structure very tricky to implement) * asynchronous reading, that is enumerating the contents of a FIB while other * modules add, modify or remove entries. * * Internally, each FIB is represented as a collection of nodes of type &fib_node * indexed using a sophisticated hashing mechanism. * We use two-stage hashing where we calculate a 16-bit primary hash key independent * on hash table size and then we just divide the primary keys modulo table size * to get a real hash key used for determining the bucket containing the node. * The lists of nodes in each bucket are sorted according to the primary hash * key, hence if we keep the total number of buckets to be a power of two, * re-hashing of the structure keeps the relative order of the nodes. * * To get the asynchronous reading consistent over node deletions, we need to * keep a list of readers for each node. When a node gets deleted, its readers * are automatically moved to the next node in the table. * * Basic FIB operations are performed by functions defined by this module, * enumerating of FIB contents is accomplished by using the FIB_WALK() macro * or FIB_ITERATE_START() if you want to do it asynchronously. * * For simple iteration just place the body of the loop between FIB_WALK() and * FIB_WALK_END(). You can't modify the FIB during the iteration (you can modify * data in the node, but not add or remove nodes). * * If you need more freedom, you can use the FIB_ITERATE_*() group of macros. * First, you initialize an iterator with FIB_ITERATE_INIT(). Then you can put * the loop body in between FIB_ITERATE_START() and FIB_ITERATE_END(). In * addition, the iteration can be suspended by calling FIB_ITERATE_PUT(). * This'll link the iterator inside the FIB. While suspended, you may modify the * FIB, exit the current function, etc. To resume the iteration, enter the loop * again. You can use FIB_ITERATE_UNLINK() to unlink the iterator (while * iteration is suspended) in cases like premature end of FIB iteration. * * Note that the iterator must not be destroyed when the iteration is suspended, * the FIB would then contain a pointer to invalid memory. Therefore, after each * FIB_ITERATE_INIT() or FIB_ITERATE_PUT() there must be either * FIB_ITERATE_START() or FIB_ITERATE_UNLINK() before the iterator is destroyed. */ #undef LOCAL_DEBUG #include "nest/bird.h" #include "nest/route.h" #include "lib/string.h" /* * The FIB rehash values are maintaining FIB count between N/5 and 2N. What * does it mean? * * +------------+--------+---------+-----------+----------+-----------+ * | Table size | Memory | Min cnt | net + rte | Max cnt | net + rte | * +------------+--------+---------+-----------+----------+-----------+ * | 1k | 8k | 0 | 0 | 2k | 192 k | * | 2k | 16k | 409 | 38.3k | 4k | 384 k | * | 4k | 32k | 819 | 76.8k | 8k | 768 k | * | 8k | 64k | 1.6k | 153.6k | 16k | 1.5M | * | 16k | 128k | 3.2k | 307.1k | 32k | 3 M | * | 32k | 256k | 6.4k | 614.3k | 64k | 6 M | * | 64k | 512k | 12.8k | 1.2M | 128k | 12 M | * | 128k | 1024k | 25.6k | 2.4M | 256k | 24 M | * | 256k | 2M | 51.2k | 4.8M | 512k | 48 M | * | 512k | 4M | 102.4k | 9.6M | 1M | 96 M | * | 1M | 8M | 204.8k | 19.2M | 2M | 192 M | * | 2M | 16M | 409.6k | 38.4M | 4M | 384 M | * | 4M | 32M | 819.2k | 76.8M | 8M | 768 M | * | 8M | 64M | 1.6M | 153.6M | infinity | infinity | * +------------+--------+---------+-----------+----------+-----------+ * * Table size shows how many slots are in FIB table. * Memory shows how much memory is eaten by FIB table. * Min cnt minimal number of nets in table of given size * Max cnt maximal number of nets in table of given size * net + rte memory eaten by 1 net and one route in it for min cnt and max cnt * * Example: If we have 750,000 network entries in a table: * * the table size may be 512k if we have never had more * * the table size may be 1M or 2M if we at least happened to have more * * 256k is too small, 8M is too big * * When growing, rehash is done on demand so we do it on every power of 2. * When shrinking, rehash is done on delete which is done (in global tables) * in a scheduled event. Rehashing down 2 steps. * */ #define HASH_DEF_ORDER 10 #define HASH_HI_MARK * 2 #define HASH_HI_STEP 1 #define HASH_HI_MAX 24 #define HASH_LO_MARK / 5 #define HASH_LO_STEP 2 #define HASH_LO_MIN 10 static void fib_ht_alloc(struct fib *f) { f->hash_size = 1 << f->hash_order; f->hash_shift = 32 - f->hash_order; if (f->hash_order > HASH_HI_MAX - HASH_HI_STEP) f->entries_max = ~0; else f->entries_max = f->hash_size HASH_HI_MARK; if (f->hash_order < HASH_LO_MIN + HASH_LO_STEP) f->entries_min = 0; else f->entries_min = f->hash_size HASH_LO_MARK; DBG("Allocating FIB hash of order %d: %d entries, %d low, %d high\n", f->hash_order, f->hash_size, f->entries_min, f->entries_max); f->hash_table = mb_alloc(f->fib_pool, f->hash_size * sizeof(struct fib_node *)); } static inline void fib_ht_free(struct fib_node **h) { mb_free(h); } static inline u32 fib_hash(struct fib *f, const net_addr *a); /** * fib_init - initialize a new FIB * @f: the FIB to be initialized (the structure itself being allocated by the caller) * @p: pool to allocate the nodes in * @node_size: node size to be used (each node consists of a standard header &fib_node * followed by user data) * @hash_order: initial hash order (a binary logarithm of hash table size), 0 to use default order * (recommended) * @init: pointer a function to be called to initialize a newly created node * * This function initializes a newly allocated FIB and prepares it for use. */ void fib_init(struct fib *f, pool *p, uint addr_type, uint node_size, uint node_offset, uint hash_order, fib_init_fn init) { uint addr_length = net_addr_length[addr_type]; if (!hash_order) hash_order = HASH_DEF_ORDER; f->fib_pool = p; f->fib_slab = addr_length ? sl_new(p, node_size + addr_length) : NULL; f->addr_type = addr_type; f->node_size = node_size; f->node_offset = node_offset; f->hash_order = hash_order; fib_ht_alloc(f); bzero(f->hash_table, f->hash_size * sizeof(struct fib_node *)); f->entries = 0; f->entries_min = 0; f->init = init; } static void fib_rehash(struct fib *f, int step) { unsigned old, new, oldn, newn, ni, nh; struct fib_node **n, *e, *x, **t, **m, **h; old = f->hash_order; oldn = f->hash_size; new = old + step; m = h = f->hash_table; DBG("Re-hashing FIB from order %d to %d\n", old, new); f->hash_order = new; fib_ht_alloc(f); t = n = f->hash_table; newn = f->hash_size; ni = 0; while (oldn--) { x = *h++; while (e = x) { x = e->next; nh = fib_hash(f, e->addr); while (nh > ni) { *t = NULL; ni++; t = ++n; } *t = e; t = &e->next; } } while (ni < newn) { *t = NULL; ni++; t = ++n; } fib_ht_free(m); } #define CAST(t) (const net_addr_##t *) #define CAST2(t) (net_addr_##t *) #define FIB_HASH(f,a,t) (net_hash_##t(CAST(t) a) >> f->hash_shift) #define FIB_FIND(f,a,t) \ ({ \ struct fib_node *e = f->hash_table[FIB_HASH(f, a, t)]; \ while (e && !net_equal_##t(CAST(t) e->addr, CAST(t) a)) \ e = e->next; \ fib_node_to_user(f, e); \ }) #define FIB_INSERT(f,a,e,t) \ ({ \ u32 h = net_hash_##t(CAST(t) a); \ struct fib_node **ee = f->hash_table + (h >> f->hash_shift); \ struct fib_node *g; \ \ while ((g = *ee) && (net_hash_##t(CAST(t) g->addr) < h)) \ ee = &g->next; \ \ net_copy_##t(CAST2(t) e->addr, CAST(t) a); \ e->next = *ee; \ *ee = e; \ }) static inline u32 fib_hash(struct fib *f, const net_addr *a) { /* Same as FIB_HASH() */ return net_hash(a) >> f->hash_shift; } void * fib_get_chain(struct fib *f, const net_addr *a) { ASSERT(f->addr_type == a->type); struct fib_node *e = f->hash_table[fib_hash(f, a)]; return e; } /** * fib_find - search for FIB node by prefix * @f: FIB to search in * @n: network address * * Search for a FIB node corresponding to the given prefix, return * a pointer to it or %NULL if no such node exists. */ void * fib_find(struct fib *f, const net_addr *a) { ASSERT(f->addr_type == a->type); switch (f->addr_type) { case NET_IP4: return FIB_FIND(f, a, ip4); case NET_IP6: return FIB_FIND(f, a, ip6); case NET_VPN4: return FIB_FIND(f, a, vpn4); case NET_VPN6: return FIB_FIND(f, a, vpn6); case NET_ROA4: return FIB_FIND(f, a, roa4); case NET_ROA6: return FIB_FIND(f, a, roa6); case NET_FLOW4: return FIB_FIND(f, a, flow4); case NET_FLOW6: return FIB_FIND(f, a, flow6); case NET_IP6_SADR: return FIB_FIND(f, a, ip6_sadr); case NET_ETH: return FIB_FIND(f, a, eth); case NET_MPLS: return FIB_FIND(f, a, mpls); case NET_EVPN: return FIB_FIND(f, a, evpn); default: bug("invalid type"); } } static void fib_insert(struct fib *f, const net_addr *a, struct fib_node *e) { ASSERT(f->addr_type == a->type); switch (f->addr_type) { case NET_IP4: FIB_INSERT(f, a, e, ip4); return; case NET_IP6: FIB_INSERT(f, a, e, ip6); return; case NET_VPN4: FIB_INSERT(f, a, e, vpn4); return; case NET_VPN6: FIB_INSERT(f, a, e, vpn6); return; case NET_ROA4: FIB_INSERT(f, a, e, roa4); return; case NET_ROA6: FIB_INSERT(f, a, e, roa6); return; case NET_FLOW4: FIB_INSERT(f, a, e, flow4); return; case NET_FLOW6: FIB_INSERT(f, a, e, flow6); return; case NET_IP6_SADR: FIB_INSERT(f, a, e, ip6_sadr); return; case NET_ETH: FIB_INSERT(f, a, e, eth); return; case NET_MPLS: FIB_INSERT(f, a, e, mpls); return; case NET_EVPN: FIB_INSERT(f, a, e, evpn); return; default: bug("invalid type"); } } /** * fib_get - find or create a FIB node * @f: FIB to work with * @n: network address * * Search for a FIB node corresponding to the given prefix and * return a pointer to it. If no such node exists, create it. */ void * fib_get(struct fib *f, const net_addr *a) { void *b = fib_find(f, a); if (b) return b; if (f->fib_slab) b = sl_alloc(f->fib_slab); else b = mb_alloc(f->fib_pool, f->node_size + a->length); struct fib_node *e = fib_user_to_node(f, b); e->readers = NULL; fib_insert(f, a, e); memset(b, 0, f->node_offset); if (f->init) f->init(f, b); if (f->entries++ > f->entries_max) fib_rehash(f, HASH_HI_STEP); return b; } static inline void * fib_route_ip4(struct fib *f, net_addr_ip4 *n) { void *r; while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0)) { n->pxlen--; ip4_clrbit(&n->prefix, n->pxlen); } return r; } static inline void * fib_route_ip6(struct fib *f, net_addr_ip6 *n) { void *r; while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0)) { n->pxlen--; ip6_clrbit(&n->prefix, n->pxlen); } return r; } /** * fib_route - CIDR routing lookup * @f: FIB to search in * @n: network address * * Search for a FIB node with longest prefix matching the given * network, that is a node which a CIDR router would use for routing * that network. */ void * fib_route(struct fib *f, const net_addr *n) { ASSERT(f->addr_type == n->type); net_addr *n0 = alloca(n->length); net_copy(n0, n); switch (n->type) { case NET_IP4: case NET_VPN4: case NET_ROA4: case NET_FLOW4: return fib_route_ip4(f, (net_addr_ip4 *) n0); case NET_IP6: case NET_VPN6: case NET_ROA6: case NET_FLOW6: return fib_route_ip6(f, (net_addr_ip6 *) n0); default: return NULL; } } static inline void fib_merge_readers(struct fib_iterator *i, struct fib_node *to) { if (to) { struct fib_iterator *j = to->readers; if (!j) { /* Fast path */ to->readers = i; i->prev = (struct fib_iterator *) to; } else { /* Really merging */ while (j->next) j = j->next; j->next = i; i->prev = j; } while (i && i->node) { i->node = NULL; i = i->next; } } else /* No more nodes */ while (i) { i->prev = NULL; i = i->next; } } /** * fib_delete - delete a FIB node * @f: FIB to delete from * @E: entry to delete * * This function removes the given entry from the FIB, * taking care of all the asynchronous readers by shifting * them to the next node in the canonical reading order. */ void fib_delete(struct fib *f, void *E) { struct fib_node *e = fib_user_to_node(f, E); uint h = fib_hash(f, e->addr); struct fib_node **ee = f->hash_table + h; struct fib_iterator *it; while (*ee) { if (*ee == e) { *ee = e->next; if (it = e->readers) { struct fib_node *l = e->next; while (!l) { h++; if (h >= f->hash_size) break; else l = f->hash_table[h]; } fib_merge_readers(it, l); } if (f->fib_slab) sl_free(E); else mb_free(E); if (f->entries-- < f->entries_min) fib_rehash(f, -HASH_LO_STEP); return; } ee = &((*ee)->next); } bug("fib_delete() called for invalid node"); } /** * fib_free - delete a FIB * @f: FIB to be deleted * * This function deletes a FIB -- it frees all memory associated * with it and all its entries. */ void fib_free(struct fib *f) { fib_ht_free(f->hash_table); rfree(f->fib_slab); } void fit_init(struct fib_iterator *i, struct fib *f) { unsigned h; struct fib_node *n; i->efef = 0xff; for(h=0; hhash_size; h++) if (n = f->hash_table[h]) { i->prev = (struct fib_iterator *) n; if (i->next = n->readers) i->next->prev = i; n->readers = i; i->node = n; return; } /* The fib is empty, nothing to do */ i->prev = i->next = NULL; i->node = NULL; } struct fib_node * fit_get(struct fib *f, struct fib_iterator *i) { struct fib_node *n; struct fib_iterator *j, *k; if (!i->prev) { /* We are at the end */ i->hash = ~0 - 1; return NULL; } if (!(n = i->node)) { /* No node info available, we are a victim of merging. Try harder. */ j = i; while (j->efef == 0xff) j = j->prev; n = (struct fib_node *) j; } j = i->prev; if (k = i->next) k->prev = j; j->next = k; i->hash = fib_hash(f, n->addr); return n; } void fit_put(struct fib_iterator *i, struct fib_node *n) { struct fib_iterator *j; i->node = n; if (j = n->readers) j->prev = i; i->next = j; n->readers = i; i->prev = (struct fib_iterator *) n; } void fit_put_next(struct fib *f, struct fib_iterator *i, struct fib_node *n, uint hpos) { if (n = n->next) goto found; while (++hpos < f->hash_size) if (n = f->hash_table[hpos]) goto found; /* We are at the end */ i->prev = i->next = NULL; i->node = NULL; return; found: fit_put(i, n); } void fit_put_end(struct fib_iterator *i) { i->prev = i->next = NULL; i->node = NULL; i->hash = ~0 - 1; } void fit_copy(struct fib *f, struct fib_iterator *dst, struct fib_iterator *src) { struct fib_iterator *nxt = src->next; fit_get(f, dst); if (!src->prev) { /* We are at the end */ fit_put_end(dst); return; } src->next = dst; dst->prev = src; dst->next = nxt; if (nxt) nxt->prev = dst; dst->node = src->node; dst->hash = src->hash; } #ifdef DEBUGGING /** * fib_check - audit a FIB * @f: FIB to be checked * * This debugging function audits a FIB by checking its internal consistency. * Use when you suspect somebody of corrupting innocent data structures. */ void fib_check(struct fib *f) { uint i, ec, nulls; ec = 0; for(i=0; ihash_size; i++) { struct fib_node *n; for(n=f->hash_table[i]; n; n=n->next) { struct fib_iterator *j, *j0; uint h0 = fib_hash(f, n->addr); if (h0 != i) bug("fib_check: mishashed %x->%x (order %d)", h0, i, f->hash_order); j0 = (struct fib_iterator *) n; nulls = 0; for(j=n->readers; j; j=j->next) { if (j->prev != j0) bug("fib_check: iterator->prev mismatch"); j0 = j; if (!j->node) nulls++; else if (nulls) bug("fib_check: iterator nullified"); else if (j->node != n) bug("fib_check: iterator->node mismatch"); } ec++; } } if (ec != f->entries) bug("fib_check: invalid entry count (%d != %d)", ec, f->entries); return; } /* int fib_histogram(struct fib *f) { log(L_WARN "Histogram dump start %d %d", f->hash_size, f->entries); int i, j; struct fib_node *e; for (i = 0; i < f->hash_size; i++) { j = 0; for (e = f->hash_table[i]; e != NULL; e = e->next) j++; if (j > 0) log(L_WARN "Histogram line %d: %d", i, j); } log(L_WARN "Histogram dump end"); } */ #endif #ifdef TEST #include "lib/resource.h" struct fib f; void dump(char *m) { uint i; debug("%s ... order=%d, size=%d, entries=%d\n", m, f.hash_order, f.hash_size, f.hash_size); for(i=0; inext) { debug("%04x %08x %p %N", i, ipa_hash(n->prefix), n, n->addr); for(j=n->readers; j; j=j->next) debug(" %p[%p]", j, j->node); debug("\n"); } } fib_check(&f); debug("-----\n"); } void init(struct fib_node *n) { } int main(void) { struct fib_node *n; struct fib_iterator i, j; ip_addr a; int c; log_init_debug(NULL); resource_init(); fib_init(&f, &root_pool, sizeof(struct fib_node), 4, init); dump("init"); a = ipa_from_u32(0x01020304); n = fib_get(&f, &a, 32); a = ipa_from_u32(0x02030405); n = fib_get(&f, &a, 32); a = ipa_from_u32(0x03040506); n = fib_get(&f, &a, 32); a = ipa_from_u32(0x00000000); n = fib_get(&f, &a, 32); a = ipa_from_u32(0x00000c01); n = fib_get(&f, &a, 32); a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32); dump("fill"); fit_init(&i, &f); dump("iter init"); fib_rehash(&f, 1); dump("rehash up"); fib_rehash(&f, -1); dump("rehash down"); next: c = 0; FIB_ITERATE_START(&f, &i, z) { if (c) { FIB_ITERATE_PUT(&i, z); dump("iter"); goto next; } c = 1; debug("got %p\n", z); } FIB_ITERATE_END(z); dump("iter end"); fit_init(&i, &f); fit_init(&j, &f); dump("iter init 2"); n = fit_get(&f, &i); dump("iter step 2"); fit_put(&i, n->next); dump("iter step 3"); a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32); fib_delete(&f, n); dump("iter step 3"); return 0; } #endif