/* * BIRD -- Routing Tables * * (c) 1998--2000 Martin Mares * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Routing tables * * Routing tables are probably the most important structures BIRD uses. They * hold all the information about known networks, the associated routes and * their attributes. * * There are multiple routing tables (a primary one together with any * number of secondary ones if requested by the configuration). Each table * is basically a FIB containing entries describing the individual * destination networks. For each network (represented by structure &net), * there is a one-way linked list of route entries (&rte), the first entry * on the list being the best one (i.e., the one we currently use * for routing), the order of the other ones is undetermined. * * The &rte contains information specific to the route (preference, protocol * metrics, time of last modification etc.) and a pointer to a &rta structure * (see the route attribute module for a precise explanation) holding the * remaining route attributes which are expected to be shared by multiple * routes in order to conserve memory. */ #undef LOCAL_DEBUG #include "nest/bird.h" #include "nest/route.h" #include "nest/protocol.h" #include "nest/iface.h" #include "lib/resource.h" #include "lib/event.h" #include "lib/string.h" #include "conf/conf.h" #include "filter/filter.h" #include "filter/data.h" #include "lib/hash.h" #include "lib/string.h" #include "lib/alloca.h" #ifdef CONFIG_RIP #include "proto/rip/rip.h" #endif #ifdef CONFIG_OSPF #include "proto/ospf/ospf.h" #endif #ifdef CONFIG_BGP #include "proto/bgp/bgp.h" #endif pool *rt_table_pool; static slab *rte_slab; static linpool *rte_update_pool; list routing_tables; static void rt_free_hostcache(rtable *tab); static void rt_notify_hostcache(rtable *tab, net *net); static void rt_update_hostcache(rtable *tab); static void rt_next_hop_update(rtable *tab); static inline void rt_prune_table(rtable *tab); /* Like fib_route(), but skips empty net entries */ static inline void * net_route_ip4(rtable *t, net_addr_ip4 *n) { net *r; while (r = net_find_valid(t, (net_addr *) n), (!r) && (n->pxlen > 0)) { n->pxlen--; ip4_clrbit(&n->prefix, n->pxlen); } return r; } static inline void * net_route_ip6(rtable *t, net_addr_ip6 *n) { net *r; while (r = net_find_valid(t, (net_addr *) n), (!r) && (n->pxlen > 0)) { n->pxlen--; ip6_clrbit(&n->prefix, n->pxlen); } return r; } static inline void * net_route_ip6_sadr(rtable *t, net_addr_ip6_sadr *n) { struct fib_node *fn; while (1) { net *best = NULL; int best_pxlen = 0; /* We need to do dst first matching. Since sadr addresses are hashed on dst prefix only, find the hash table chain and go through it to find the match with the smallest matching src prefix. */ for (fn = fib_get_chain(&t->fib, (net_addr *) n); fn; fn = fn->next) { net_addr_ip6_sadr *a = (void *) fn->addr; if (net_equal_dst_ip6_sadr(n, a) && net_in_net_src_ip6_sadr(n, a) && (a->src_pxlen >= best_pxlen)) { best = fib_node_to_user(&t->fib, fn); best_pxlen = a->src_pxlen; } } if (best) return best; if (!n->dst_pxlen) break; n->dst_pxlen--; ip6_clrbit(&n->dst_prefix, n->dst_pxlen); } return NULL; } void * net_route(rtable *tab, const net_addr *n) { ASSERT(tab->addr_type == n->type); net_addr *n0 = alloca(n->length); net_copy(n0, n); switch (n->type) { case NET_IP4: case NET_VPN4: case NET_ROA4: return net_route_ip4(tab, (net_addr_ip4 *) n0); case NET_IP6: case NET_VPN6: case NET_ROA6: return net_route_ip6(tab, (net_addr_ip6 *) n0); case NET_IP6_SADR: return net_route_ip6_sadr(tab, (net_addr_ip6_sadr *) n0); default: return NULL; } } static int net_roa_check_ip4(rtable *tab, const net_addr_ip4 *px, u32 asn) { struct net_addr_roa4 n = NET_ADDR_ROA4(px->prefix, px->pxlen, 0, 0); struct fib_node *fn; int anything = 0; while (1) { for (fn = fib_get_chain(&tab->fib, (net_addr *) &n); fn; fn = fn->next) { net_addr_roa4 *roa = (void *) fn->addr; net *r = fib_node_to_user(&tab->fib, fn); if (net_equal_prefix_roa4(roa, &n) && rte_is_valid(r->routes)) { anything = 1; if (asn && (roa->asn == asn) && (roa->max_pxlen >= px->pxlen)) return ROA_VALID; } } if (n.pxlen == 0) break; n.pxlen--; ip4_clrbit(&n.prefix, n.pxlen); } return anything ? ROA_INVALID : ROA_UNKNOWN; } static int net_roa_check_ip6(rtable *tab, const net_addr_ip6 *px, u32 asn) { struct net_addr_roa6 n = NET_ADDR_ROA6(px->prefix, px->pxlen, 0, 0); struct fib_node *fn; int anything = 0; while (1) { for (fn = fib_get_chain(&tab->fib, (net_addr *) &n); fn; fn = fn->next) { net_addr_roa6 *roa = (void *) fn->addr; net *r = fib_node_to_user(&tab->fib, fn); if (net_equal_prefix_roa6(roa, &n) && rte_is_valid(r->routes)) { anything = 1; if (asn && (roa->asn == asn) && (roa->max_pxlen >= px->pxlen)) return ROA_VALID; } } if (n.pxlen == 0) break; n.pxlen--; ip6_clrbit(&n.prefix, n.pxlen); } return anything ? ROA_INVALID : ROA_UNKNOWN; } /** * roa_check - check validity of route origination in a ROA table * @tab: ROA table * @n: network prefix to check * @asn: AS number of network prefix * * Implements RFC 6483 route validation for the given network prefix. The * procedure is to find all candidate ROAs - ROAs whose prefixes cover the given * network prefix. If there is no candidate ROA, return ROA_UNKNOWN. If there is * a candidate ROA with matching ASN and maxlen field greater than or equal to * the given prefix length, return ROA_VALID. Otherwise, return ROA_INVALID. If * caller cannot determine origin AS, 0 could be used (in that case ROA_VALID * cannot happen). Table @tab must have type NET_ROA4 or NET_ROA6, network @n * must have type NET_IP4 or NET_IP6, respectively. */ int net_roa_check(rtable *tab, const net_addr *n, u32 asn) { if ((tab->addr_type == NET_ROA4) && (n->type == NET_IP4)) return net_roa_check_ip4(tab, (const net_addr_ip4 *) n, asn); else if ((tab->addr_type == NET_ROA6) && (n->type == NET_IP6)) return net_roa_check_ip6(tab, (const net_addr_ip6 *) n, asn); else return ROA_UNKNOWN; /* Should not happen */ } /** * rte_find - find a route * @net: network node * @src: route source * * The rte_find() function returns a route for destination @net * which is from route source @src. */ struct rte_storage * rte_find(net *net, struct rte_src *src) { struct rte_storage *e = net->routes; while (e && e->src != src) e = e->next; return e; } struct rte_storage * rte_store(const rte *r, net *n) { struct rte_storage *e = sl_alloc(rte_slab); *e = (struct rte_storage) { .attrs = r->attrs, .net = n, .src = r->src, }; rt_lock_source(e->src); if (e->attrs->cached) e->attrs = rta_clone(r->attrs); else e->attrs = rta_lookup(r->attrs); return e; } void rte_copy_metadata(struct rte_storage *dest, struct rte_storage *src) { dest->sender = src->sender; dest->flags = src->flags & REF_FILTERED; dest->pflags = src->pflags; dest->lastmod = src->lastmod; } /** * rte_cow_rta - get a private writable copy of &rte with writable &rta * @r: a route entry to be copied * @lp: a linpool from which to allocate &rta * * rte_cow_rta() returns directly a &rte struct; the route attributes are * a shallow copy made on the given linpool, src is not locked. * * To work properly, the caller must own the original rte_storage whole the * time this route is being used. * * Result: a new &rte with writable &rta. */ rte rte_cow_rta(const struct rte_storage *r, linpool *lp) { return (rte) { .attrs = rta_do_cow(r->attrs, lp), .net = r->net->n.addr, .src = r->src, }; } /** * rte_free - delete a &rte * @e: &rte to be deleted * * rte_free() deletes the given &rte from the routing table it's linked to. */ void rte_free(struct rte_storage *e) { rt_unlock_source(e->src); rta_free(e->attrs); sl_free(rte_slab, e); } enum export_filter_result { EFR_PREEXPORT_ACCEPT = 1, EFR_FILTER_ACCEPT, EFR_FILTER_REJECT, EFR_PREEXPORT_REJECT, EFR_CACHED_REJECT, } new_efr; struct rte_export_internal { net *net; struct rte_storage *new, *old, *new_best, *old_best; u32 refeed:1; u32 accepted:1; }; //_Thread_local static struct rte_export_internal rei; static int /* Actually better or at least as good as */ rte_better(struct rte_storage *new, struct rte_storage *old) { int (*better)(struct rte_storage *, struct rte_storage *); if (!rte_is_valid(old)) return 1; if (!rte_is_valid(new)) return 0; if (new->attrs->pref > old->attrs->pref) return 1; if (new->attrs->pref < old->attrs->pref) return 0; if (new->src->proto->proto != old->src->proto->proto) { /* * If the user has configured protocol preferences, so that two different protocols * have the same preference, try to break the tie by comparing addresses. Not too * useful, but keeps the ordering of routes unambiguous. */ return new->src->proto->proto > old->src->proto->proto; } if (better = new->src->proto->rte_better) return better(new, old); return 0; } static int rte_mergable(struct rte_storage *pri, struct rte_storage *sec) { int (*mergable)(struct rte_storage *, struct rte_storage *); if (!rte_is_valid(pri) || !rte_is_valid(sec)) return 0; if (pri->attrs->pref != sec->attrs->pref) return 0; if (pri->src->proto->proto != sec->src->proto->proto) return 0; if (mergable = pri->src->proto->rte_mergable) return mergable(pri, sec); return 0; } static void rte_trace(struct proto *p, rte *e, int dir, char *msg) { log(L_TRACE "%s %c %s %N %s", p->name, dir, msg, e->net, rta_dest_name(e->attrs->dest)); } static inline void rte_trace_in(uint flag, struct proto *p, rte *e, char *msg) { if (p->debug & flag) rte_trace(p, e, '>', msg); } static inline void rte_trace_out(uint flag, struct proto *p, rte *e, char *msg) { if (p->debug & flag) rte_trace(p, e, '<', msg); } enum export_filter_result export_filter_(struct channel *c, struct rte *rt, u32 id, linpool *pool, int silent) { struct proto *p = c->proto; const struct filter *filter = c->out_filter; struct proto_stats *stats = &c->stats; int v; enum export_filter_result efr = 0; /* Do nothing if we have already rejected the route */ if (silent && bmap_test(&c->export_reject_map, id)) return EFR_CACHED_REJECT; v = p->preexport ? p->preexport(c, rt) : 0; if (v < 0) { efr = EFR_PREEXPORT_REJECT; if (silent) goto reject; stats->exp_updates_rejected++; if (v == RIC_REJECT) rte_trace_out(D_FILTERS, p, rt, "rejected by protocol"); goto reject; } if (v > 0) { efr = EFR_PREEXPORT_ACCEPT; if (!silent) rte_trace_out(D_FILTERS, p, rt, "forced accept by protocol"); goto accept; } v = filter && ((filter == FILTER_REJECT) || (f_run(filter, rt, pool, (silent ? FF_SILENT : 0)) > F_ACCEPT)); if (v) { efr = EFR_FILTER_REJECT; if (silent) goto reject; stats->exp_updates_filtered++; rte_trace_out(D_FILTERS, p, rt, "filtered out"); goto reject; } efr = EFR_FILTER_ACCEPT; accept: /* We have accepted the route */ bmap_clear(&c->export_reject_map, id); return efr; reject: /* We have rejected the route */ bmap_set(&c->export_reject_map, id); rt->attrs = NULL; return efr; } enum export_filter_result export_filter(struct channel *c, rte *rt, u32 id, int silent) { return export_filter_(c, rt, id, rte_update_pool, silent); } USE_RESULT static struct rte_export * rt_notify_basic(struct channel *c, struct rte_export_internal *e) { struct rte_export *ep = lp_allocz(rte_update_pool, sizeof(struct rte_export)); if (e->new) c->stats.exp_updates_received++; else c->stats.exp_withdraws_received++; if (e->new) { ep->new = rte_copy(e->new); ep->new_id = e->new->id; if (export_filter(c, &ep->new, ep->new_id, 0) >= EFR_FILTER_REJECT) /* If reject, send a withdraw */ ep->new.attrs = NULL; } if (e->old && bmap_test(&c->export_map, e->old->id)) { ep->old = rte_copy(e->old); ep->old_id = e->old->id; } return rte_export_kind(ep) ? ep : NULL; } USE_RESULT static struct rte_export * rt_notify_accepted(struct channel *c, struct rte_export_internal *e) { // struct proto *p = c->proto; struct rte_storage *old_best = NULL; int new_first = 0; struct rte_export *ep = lp_allocz(rte_update_pool, sizeof(struct rte_export)); /* * We assume that there are no changes in net route order except (added) * new_changed and (removed) old_changed. Therefore, the function is not * compatible with deterministic_med (where nontrivial reordering can happen * as a result of a route change) and with recomputation of recursive routes * due to next hop update (where many routes can be changed in one step). * * Note that we need this assumption just for optimizations, we could just * run full new_best recomputation otherwise. * * There are three cases: * feed or old_best is old_changed -> we need to recompute new_best * old_best is before new_changed -> new_best is old_best, ignore * old_best is after new_changed -> try new_changed, otherwise old_best */ if (e->net->routes) c->stats.exp_updates_received++; else c->stats.exp_withdraws_received++; /* Find old_best - either old_changed, or route for net->routes */ if (e->old && bmap_test(&c->export_map, e->old->id)) old_best = e->old; else { for (struct rte_storage *r = e->net->routes; rte_is_valid(r); r = r->next) { if (bmap_test(&c->export_map, r->id)) { old_best = r; break; } /* Note if new_changed found before old_best */ if (r == e->new) new_first = 1; } } /* Find new_best */ if ((e->new == e->old) || (old_best == e->old)) { /* Feed or old_best changed -> find first accepted by filters */ for (struct rte_storage *r = e->net->routes; rte_is_valid(r); r = r->next) { ep->new = rte_copy(r); if (export_filter(c, &ep->new, ep->new_id = r->id, 0) <= EFR_FILTER_ACCEPT) break; } } else { if (!new_first) /* old_best is still best, nothing has changed */ return NULL; ep->new = rte_copy(e->new); if (export_filter(c, &ep->new, ep->new_id = e->new->id, 0) >= EFR_FILTER_REJECT) /* This route is better than old_best but doesn't pass */ return NULL; } if (old_best) { /* Store the old_best route */ ep->old = rte_copy(old_best); ep->old_id = old_best->id; } return rte_export_kind(ep) ? ep : NULL; } static struct nexthop * nexthop_merge_rta(struct nexthop *nhs, rta *a, linpool *pool, int max) { return nexthop_merge(nhs, &(a->nh), 1, 0, max, pool); } _Bool rt_export_merged(struct channel *c, net *net, rte *best, linpool *pool, int silent) { // struct proto *p = c->proto; struct nexthop *nhs = NULL; struct rte_storage *best0 = net->routes; if (!rte_is_valid(best0)) return 0; *best = rte_copy(best0); if (export_filter_(c, best, best0->id, pool, silent) >= EFR_FILTER_REJECT) /* Best route doesn't pass the filter */ return 0; if (!rte_is_reachable(best)) /* Unreachable routes can't be merged */ return 1; for (struct rte_storage *rt0 = best0->next; rt0; rt0 = rt0->next) { if (!rte_mergable(best0, rt0)) continue; struct rte tmp = rte_copy(rt0); if (export_filter_(c, &tmp, rt0->id, pool, 1) >= EFR_FILTER_REJECT) continue; if (!rte_is_reachable(&tmp)) continue; nhs = nexthop_merge_rta(nhs, tmp.attrs, pool, c->merge_limit); } if (nhs) { nhs = nexthop_merge_rta(nhs, best->attrs, pool, c->merge_limit); if (nhs->next) best->attrs = rta_cow(best->attrs, pool); nexthop_link(best->attrs, nhs); } return 1; } USE_RESULT static struct rte_export * rt_notify_merged(struct channel *c, struct rte_export_internal *e) { /* We assume that all rte arguments are either NULL or rte_is_valid() */ /* This check should be done by the caller */ if (!e->new_best && !e->old_best) return NULL; /* Check whether the change is relevant to the merged route */ if ((e->new_best == e->old_best) && (e->new != e->old) && !rte_mergable(e->new_best, e->new) && !rte_mergable(e->old_best, e->old)) return NULL; if (e->new_best) c->stats.exp_updates_received++; else c->stats.exp_withdraws_received++; struct rte_export *ep = lp_allocz(rte_update_pool, sizeof(struct rte_export)); /* Prepare new merged route */ if (e->new_best) { ep->new_id = e->new->id; if (!rt_export_merged(c, e->net, &ep->new, rte_update_pool, 0)) ep->new.attrs = NULL; } /* Check old merged route */ if (e->old_best && bmap_test(&c->export_map, e->old_best->id)) { ep->old_id = e->old_best->id; ep->old = rte_copy(e->old_best); } return rte_export_kind(ep) ? ep : NULL; } static void rte_export(struct channel *c, struct rte_export_internal *e) { uint ra_mode = c->ra_mode; struct rte_export *ep = NULL; switch (ra_mode) { case RA_OPTIMAL: if (e->new_best == e->old_best) break; e->new = e->new_best; e->old = e->old_best; /* fall through */ case RA_ANY: ep = rt_notify_basic(c, e); break; case RA_ACCEPTED: ep = rt_notify_accepted(c, e); break; case RA_MERGED: ep = rt_notify_merged(c, e); break; default: bug("Strange channel route announcement mode"); } if (!ep) { debug("Idempotent export.\n"); goto cleanup; } struct proto *p = c->proto; struct proto_stats *stats = &c->stats; if (e->refeed && ep->new.attrs) c->refeed_count++; /* Apply export limit */ struct channel_limit *l = &c->out_limit; if (l->action && !ep->old.attrs && ep->new.attrs) { if (stats->exp_routes >= l->limit) channel_notify_limit(c, l, PLD_OUT, stats->exp_routes); if (l->state == PLS_BLOCKED) { stats->exp_updates_rejected++; rte_trace_out(D_FILTERS, p, &ep->new, "rejected [limit]"); goto cleanup; } } struct rte_storage *old_stored = NULL; /* Apply export table */ if (c->out_table) { if (!rte_update_out(c, &(ep->new), &(ep->old), &old_stored, e->refeed)) goto cleanup; } else if (c->out_filter != FILTER_ACCEPT) /* We aren't sure about the old route attributes */ ep->old.attrs = NULL; if (ep->new.attrs) stats->exp_updates_accepted++; else stats->exp_withdraws_accepted++; if (ep->old.attrs) { bmap_clear(&c->export_map, ep->old_id); stats->exp_routes--; } if (ep->new.attrs) { bmap_set(&c->export_map, ep->new_id); stats->exp_routes++; } if (p->debug & D_ROUTES) switch (rte_export_kind(ep)) { case REX_NOTHING: bug("Idempotent exports should have been ignored by now"); case REX_ANNOUNCEMENT: rte_trace_out(D_ROUTES, p, &ep->new, "added"); break; case REX_WITHDRAWAL: rte_trace_out(D_ROUTES, p, &ep->old, "removed"); break; case REX_UPDATE: rte_trace_out(D_ROUTES, p, &ep->new, "replaced"); break; } p->rt_notify(c, ep); if (old_stored) rte_free(old_stored); cleanup: if (e->old && (!e->new || (e->new->id != e->old->id))) bmap_clear(&c->export_reject_map, e->old->id); } /** * rte_announce - announce a routing table change * @tab: table the route has been added to * @type: type of route announcement (RA_UNDEF or RA_ANY) * @net: network in question * @new: the new or changed route * @old: the previous route replaced by the new one * @new_best: the new best route for the same network * @old_best: the previous best route for the same network * * This function gets a routing table update and announces it to all protocols * that are connected to the same table by their channels. * * There are two ways of how routing table changes are announced. First, there * is a change of just one route in @net (which may caused a change of the best * route of the network). In this case @new and @old describes the changed route * and @new_best and @old_best describes best routes. Other routes are not * affected, but in sorted table the order of other routes might change. * * Second, There is a bulk change of multiple routes in @net, with shared best * route selection. In such case separate route changes are described using * @type of %RA_ANY, with @new and @old specifying the changed route, while * @new_best and @old_best are NULL. After that, another notification is done * where @new_best and @old_best are filled (may be the same), but @new and @old * are NULL. * * The function announces the change to all associated channels. For each * channel, an appropriate preprocessing is done according to channel &ra_mode. * For example, %RA_OPTIMAL channels receive just changes of best routes. * * In general, we first call preexport() hook of a protocol, which performs * basic checks on the route (each protocol has a right to veto or force accept * of the route before any filter is asked). Then we consult an export filter * of the channel and verify the old route in an export map of the channel. * Finally, the rt_notify() hook of the protocol gets called. * * Note that there are also calls of rt_notify() hooks due to feed, but that is * done outside of scope of rte_announce(). */ static void rte_announce(rtable *tab, uint type, net *net, struct rte_storage *new, struct rte_storage *old, struct rte_storage *new_best, struct rte_storage *old_best) { if (!rte_is_valid(new)) new = NULL; if (!rte_is_valid(old)) old = NULL; if (!rte_is_valid(new_best)) new_best = NULL; if (!rte_is_valid(old_best)) old_best = NULL; if (!new && !old && !new_best && !old_best) return; if (new_best != old_best) { if (new_best) new_best->sender->stats.pref_routes++; if (old_best) old_best->sender->stats.pref_routes--; if (tab->hostcache) rt_notify_hostcache(tab, net); } struct channel *c; node *n; WALK_LIST2(c, n, tab->channels, table_node) { if (c->export_state == ES_DOWN) continue; if (type && (type != c->ra_mode)) { /* If skipping other means of announcement, * drop the rejection bit anyway * as we won't get this route as old any more. * This happens when updating hostentries. */ if (old) bmap_clear(&c->export_reject_map, old->id); continue; } struct rte_export_internal rei = { .net = net, .new = new, .old = old, .new_best = new_best, .old_best = old_best, }; rte_export(c, &rei); } } static int rte_same(struct rte_storage *x, rte *y, _Bool fy) { /* rte.flags are not checked, as they are mostly internal to rtable */ return x->attrs == y->attrs && x->src == y->src && rte_is_filtered(x) == fy; } static void NONNULL(1,2,3) rte_recalculate(struct channel *c, net *net, rte *new, _Bool filtered) { struct proto *p = c->proto; struct rtable *table = c->table; struct proto_stats *stats = &c->stats; static struct tbf rl_pipe = TBF_DEFAULT_LOG_LIMITS; struct rte_storage *old_best = net->routes; struct rte_storage *old = NULL, *before_old = NULL; /* Find and remove original route from the same protocol */ for (struct rte_storage **k = &net->routes; old = *k; k = &((before_old = old)->next)) { /* Another route */ if (old->src != new->src) continue; /* If there is the same route in the routing table but from * a different sender, then there are two paths from the * source protocol to this routing table through transparent * pipes, which is not allowed. * * We log that and ignore the route. If it is withdraw, we * ignore it completely (there might be 'spurious withdraws', * see FIXME in do_rte_announce()) */ if (old->sender->proto != p) { if (new->attrs) log_rl(&rl_pipe, L_ERR "Pipe collision detected when sending %N to table %s", net->n.addr, table->name); return; } if (new->attrs && rte_same(old, new, filtered)) { /* No changes, ignore the new route and refresh the old one */ old->flags &= ~(REF_STALE | REF_DISCARD | REF_MODIFY); if (!filtered) { stats->imp_updates_ignored++; rte_trace_in(D_ROUTES, p, new, "ignored"); } return; } *k = old->next; table->rt_count--; break; } if (!old) before_old = NULL; if (!old && !new->attrs) { stats->imp_withdraws_ignored++; return; } _Bool new_ok = new->attrs && !filtered; _Bool old_ok = old && !rte_is_filtered(old); struct channel_limit *l = &c->rx_limit; if (l->action && !old && new->attrs && !c->in_table) { u32 all_routes = stats->imp_routes + stats->filt_routes; if (all_routes >= l->limit) channel_notify_limit(c, l, PLD_RX, all_routes); if (l->state == PLS_BLOCKED) { /* In receive limit the situation is simple, old is NULL so we just free new and exit like nothing happened */ stats->imp_updates_ignored++; rte_trace_in(D_FILTERS, p, new, "ignored [limit]"); return; } } l = &c->in_limit; if (l->action && !old_ok && new_ok) { if (stats->imp_routes >= l->limit) channel_notify_limit(c, l, PLD_IN, stats->imp_routes); if (l->state == PLS_BLOCKED) { /* In import limit the situation is more complicated. We shouldn't just drop the route, we should handle it like it was filtered. We also have to continue the route processing if old or new is non-NULL, but we should exit if both are NULL as this case is probably assumed to be already handled. */ stats->imp_updates_ignored++; rte_trace_in(D_FILTERS, p, new, "ignored [limit]"); if (c->in_keep_filtered) filtered = 1; else new->attrs = NULL; /* Note that old && !new could be possible when c->in_keep_filtered changed in the recent past. */ if (!old && !new->attrs) return; new_ok = 0; goto skip_stats1; } } if (new_ok) stats->imp_updates_accepted++; else if (old_ok) stats->imp_withdraws_accepted++; else stats->imp_withdraws_ignored++; skip_stats1: if (new->attrs) filtered ? stats->filt_routes++ : stats->imp_routes++; if (old) rte_is_filtered(old) ? stats->filt_routes-- : stats->imp_routes--; /* Store the new route now, it is going to be inserted. */ struct rte_storage *new_stored = NULL; if (new->attrs) { new_stored = rte_store(new, net); new_stored->sender = c; if (filtered) new_stored->flags |= REF_FILTERED; } if (table->config->sorted) { /* If routes are sorted, just insert new route to appropriate position */ if (new_stored) { struct rte_storage **k; if (before_old && !rte_better(new_stored, before_old)) k = &before_old->next; else k = &net->routes; for (; *k; k=&(*k)->next) if (rte_better(new_stored, *k)) break; new_stored->next = *k; *k = new_stored; table->rt_count++; } } else { /* If routes are not sorted, find the best route and move it on the first position. There are several optimized cases. */ if (new->src->proto->rte_recalculate && new->src->proto->rte_recalculate(table, net, new_stored, old, old_best)) goto do_recalculate; if (new_stored && rte_better(new_stored, old_best)) { /* The first case - the new route is cleary optimal, we link it at the first position */ new_stored->next = net->routes; net->routes = new_stored; table->rt_count++; } else if (old == old_best) { /* The second case - the old best route disappeared, we add the new route (if we have any) to the list (we don't care about position) and then we elect the new optimal route and relink that route at the first position and announce it. New optimal route might be NULL if there is no more routes */ do_recalculate: /* Add the new route to the list */ if (new_stored) { new_stored->next = net->routes; net->routes = new_stored; table->rt_count++; } /* Find a new optimal route (if there is any) */ if (net->routes) { struct rte_storage **bp = &net->routes; for (struct rte_storage **k=&(*bp)->next; *k; k=&(*k)->next) if (rte_better(*k, *bp)) bp = k; /* And relink it */ struct rte_storage *best = *bp; *bp = best->next; best->next = net->routes; net->routes = best; } } else if (new_stored) { /* The third case - the new route is not better than the old best route (therefore old_best != NULL) and the old best route was not removed (therefore old_best == net->routes). We just link the new route after the old best route. */ ASSERT(net->routes != NULL); new_stored->next = net->routes->next; net->routes->next = new_stored; table->rt_count++; } /* The fourth (empty) case - suboptimal route was removed, nothing to do */ } if (new_stored) { new_stored->lastmod = current_time(); if (!old) { new_stored->id = hmap_first_zero(&table->id_map); hmap_set(&table->id_map, new_stored->id); } else new_stored->id = old->id; } /* Log the route change */ if (p->debug & D_ROUTES) { if (new_ok) rte_trace(p, new, '>', new_stored == net->routes ? "added [best]" : "added"); else if (old_ok) { rte old_copy = rte_copy(old); if (old != old_best) rte_trace(p, &old_copy, '>', "removed"); else if (net->routes && !rte_is_filtered(net->routes)) rte_trace(p, &old_copy, '>', "removed [replaced]"); else rte_trace(p, &old_copy, '>', "removed [sole]"); } } /* Propagate the route change */ rte_announce(table, RA_UNDEF, net, new_stored, old, net->routes, old_best); if (!net->routes && (table->gc_counter++ >= table->config->gc_max_ops) && (table->gc_time + table->config->gc_min_time <= current_time())) rt_schedule_prune(table); if (old_ok && p->rte_remove) p->rte_remove(net, old); if (new_ok && p->rte_insert) p->rte_insert(net, new_stored); if (old) { if (!new_stored) hmap_clear(&table->id_map, old->id); rte_free(old); } } static int rte_update_nest_cnt; /* Nesting counter to allow recursive updates */ static inline void rte_update_lock(void) { rte_update_nest_cnt++; } static inline void rte_update_unlock(void) { if (!--rte_update_nest_cnt) lp_flush(rte_update_pool); } static int NONNULL(1,2) rte_update_in(struct channel *c, rte *new); static void NONNULL(1,2) rte_update2(struct channel *c, rte *new); void NONNULL(1,2) rte_update(struct channel *c, rte *new) { ASSERT(c->channel_state == CS_UP); ASSERT(new->net); ASSERT(new->src); if (new->attrs && !new->attrs->pref) { ASSERT(!new->attrs->cached); new->attrs->pref = c->preference; } if (c->in_table && !rte_update_in(c, new)) return; rte_update2(c, new); } static void NONNULL(1,2) rte_update2(struct channel *c, rte *new) { struct proto *p = c->proto; struct proto_stats *stats = &c->stats; const struct filter *filter = c->in_filter; _Bool filtered = 0; if (new->attrs) stats->imp_updates_received++; else stats->imp_withdraws_received++; rte_update_lock(); if (!net_validate(new->net)) { log(L_WARN "Ignoring bogus prefix %N received via %s.%s", new->net, c->proto->name, c->name); goto invalid; } /* FIXME: better handling different nettypes */ int cl = !net_is_flow(new->net) ? net_classify(new->net): (IADDR_HOST | SCOPE_UNIVERSE); if ((cl < 0) || !(cl & IADDR_HOST) || ((cl & IADDR_SCOPE_MASK) <= SCOPE_LINK)) { log(L_WARN "Ignoring bogus route %N received via %s.%s", new->net, c->proto->name, c->name); goto invalid; } if (new->attrs) { if (net_type_match(new->net, NB_DEST) == !new->attrs->dest) { log(L_WARN "Ignoring route %N with invalid dest %d received via %s.%s", new->net, new->attrs->dest, c->proto->name, c->name); goto invalid; } if ((new->attrs->dest == RTD_UNICAST) && !nexthop_is_sorted(&(new->attrs->nh))) { log(L_WARN "Ignoring unsorted multipath route %N received via %s.%s", new->net, c->proto->name, c->name); goto invalid; } if ((filter == FILTER_REJECT) || (filter && (f_run(filter, new, rte_update_pool, 0) > F_ACCEPT))) { stats->imp_updates_filtered++; rte_trace_in(D_FILTERS, p, new, "filtered out"); filtered = 1; } } /* Find a table record */ net *nn; if (new->attrs && (!filtered || c->in_keep_filtered)) /* This is an update and it shall pass to the table */ nn = net_get(c->table, new->net); else { /* This is a withdraw and it need not be in the table */ nn = net_find(c->table, new->net); if (!nn) /* No previous table record found */ { if (!new->attrs) /* Regular withdraw */ stats->imp_withdraws_ignored++; rte_update_unlock(); return; } /* Drop the attributes as they aren't for anything now. */ new->attrs = NULL; } /* And recalculate the best route */ rte_recalculate(c, nn, new, filtered); rte_update_unlock(); return; invalid: if (new->attrs) { stats->imp_updates_invalid++; rte_trace_in(D_FILTERS, p, new, "invalid"); } else stats->imp_withdraws_invalid++; rte_update_unlock(); return; } /* Independent call to rte_announce(), used from next hop recalculation, outside of rte_update(). new must be non-NULL */ static inline void rte_announce_i(rtable *tab, uint type, net *net, struct rte_storage *new, struct rte_storage *old, struct rte_storage *new_best, struct rte_storage *old_best) { rte_update_lock(); rte_announce(tab, type, net, new, old, new_best, old_best); rte_update_unlock(); } /* Modify existing route by protocol hook, used for long-lived graceful restart */ static inline void rte_modify(struct rte_storage *old) { rte_update_lock(); rte new = { .net = old->net->n.addr, .src = old->src, .attrs = old->sender->proto->rte_modify(old, rte_update_pool), }; if (new.attrs != old->attrs) rte_recalculate(old->sender, old->net, &new, old->src); rte_update_unlock(); } /** * rt_refresh_begin - start a refresh cycle * @t: related routing table * @c related channel * * This function starts a refresh cycle for given routing table and announce * hook. The refresh cycle is a sequence where the protocol sends all its valid * routes to the routing table (by rte_update()). After that, all protocol * routes (more precisely routes with @c as @sender) not sent during the * refresh cycle but still in the table from the past are pruned. This is * implemented by marking all related routes as stale by REF_STALE flag in * rt_refresh_begin(), then marking all related stale routes with REF_DISCARD * flag in rt_refresh_end() and then removing such routes in the prune loop. */ void rt_refresh_begin(rtable *t, struct channel *c) { FIB_WALK(&t->fib, net, n) { for (struct rte_storage *e = n->routes; e; e = e->next) if (e->sender == c) e->flags |= REF_STALE; } FIB_WALK_END; } /** * rt_refresh_end - end a refresh cycle * @t: related routing table * @c: related channel * * This function ends a refresh cycle for given routing table and announce * hook. See rt_refresh_begin() for description of refresh cycles. */ void rt_refresh_end(rtable *t, struct channel *c) { int prune = 0; FIB_WALK(&t->fib, net, n) { for (struct rte_storage *e = n->routes; e; e = e->next) if ((e->sender == c) && (e->flags & REF_STALE)) { e->flags |= REF_DISCARD; prune = 1; } } FIB_WALK_END; if (prune) rt_schedule_prune(t); } void rt_modify_stale(rtable *t, struct channel *c) { int prune = 0; FIB_WALK(&t->fib, net, n) { for (struct rte_storage *e = n->routes; e; e = e->next) if ((e->sender == c) && (e->flags & REF_STALE) && !(e->flags & REF_FILTERED)) { e->flags |= REF_MODIFY; prune = 1; } } FIB_WALK_END; if (prune) rt_schedule_prune(t); } /** * rte_dump - dump a route * @e: &rte to be dumped * * This functions dumps contents of a &rte to debug output. */ void rte_dump(struct rte_storage *e) { net *n = e->net; debug("%-1N ", n->n.addr); debug("p=%s src=(%u/%u) ", e->src->proto->name, e->src->private_id, e->src->global_id); debug("PF=%02x ", e->pflags); rta_dump(e->attrs); debug("\n"); } /** * rt_dump - dump a routing table * @t: routing table to be dumped * * This function dumps contents of a given routing table to debug output. */ void rt_dump(rtable *t) { debug("Dump of routing table <%s>\n", t->name); #ifdef DEBUGGING fib_check(&t->fib); #endif FIB_WALK(&t->fib, net, n) { for(struct rte_storage *e=n->routes; e; e=e->next) rte_dump(e); } FIB_WALK_END; debug("\n"); } /** * rt_dump_all - dump all routing tables * * This function dumps contents of all routing tables to debug output. */ void rt_dump_all(void) { rtable *t; WALK_LIST(t, routing_tables) rt_dump(t); } static inline void rt_schedule_hcu(rtable *tab) { if (tab->hcu_scheduled) return; tab->hcu_scheduled = 1; ev_schedule(tab->rt_event); } static inline void rt_schedule_nhu(rtable *tab) { if (tab->nhu_state == NHU_CLEAN) ev_schedule(tab->rt_event); /* state change: * NHU_CLEAN -> NHU_SCHEDULED * NHU_RUNNING -> NHU_DIRTY */ tab->nhu_state |= NHU_SCHEDULED; } void rt_schedule_prune(rtable *tab) { if (tab->prune_state == 0) ev_schedule(tab->rt_event); /* state change 0->1, 2->3 */ tab->prune_state |= 1; } static void rt_event(void *ptr) { rtable *tab = ptr; rt_lock_table(tab); if (tab->hcu_scheduled) rt_update_hostcache(tab); if (tab->nhu_state) rt_next_hop_update(tab); if (tab->prune_state) rt_prune_table(tab); rt_unlock_table(tab); } void rt_setup(pool *p, rtable *t, struct rtable_config *cf) { bzero(t, sizeof(*t)); t->name = cf->name; t->config = cf; t->addr_type = cf->addr_type; fib_init(&t->fib, p, t->addr_type, sizeof(net), OFFSETOF(net, n), 0, NULL); init_list(&t->channels); hmap_init(&t->id_map, p, 1024); hmap_set(&t->id_map, 0); t->rt_event = ev_new_init(p, rt_event, t); t->gc_time = current_time(); } /** * rt_init - initialize routing tables * * This function is called during BIRD startup. It initializes the * routing table module. */ void rt_init(void) { rta_init(); rt_table_pool = rp_new(&root_pool, "Routing tables"); rte_update_pool = lp_new_default(rt_table_pool); rte_slab = sl_new(rt_table_pool, sizeof(struct rte_storage)); init_list(&routing_tables); } /** * rt_prune_table - prune a routing table * * The prune loop scans routing tables and removes routes belonging to flushing * protocols, discarded routes and also stale network entries. It is called from * rt_event(). The event is rescheduled if the current iteration do not finish * the table. The pruning is directed by the prune state (@prune_state), * specifying whether the prune cycle is scheduled or running, and there * is also a persistent pruning iterator (@prune_fit). * * The prune loop is used also for channel flushing. For this purpose, the * channels to flush are marked before the iteration and notified after the * iteration. */ static void rt_prune_table(rtable *tab) { struct fib_iterator *fit = &tab->prune_fit; int limit = 512; struct channel *c; node *n, *x; DBG("Pruning route table %s\n", tab->name); #ifdef DEBUGGING fib_check(&tab->fib); #endif if (tab->prune_state == 0) return; if (tab->prune_state == 1) { /* Mark channels to flush */ WALK_LIST2(c, n, tab->channels, table_node) if (c->channel_state == CS_FLUSHING) c->flush_active = 1; FIB_ITERATE_INIT(fit, &tab->fib); tab->prune_state = 2; } again: FIB_ITERATE_START(&tab->fib, fit, net, n) { rescan: for (struct rte_storage *e=n->routes; e; e=e->next) { if (e->sender->flush_active || (e->flags & REF_DISCARD)) { if (limit <= 0) { FIB_ITERATE_PUT(fit); ev_schedule(tab->rt_event); return; } /* Discard the route */ rte_update_lock(); rte ew = { .net = e->net->n.addr, .src = e->src }; rte_recalculate(e->sender, e->net, &ew, 0); rte_update_unlock(); limit--; goto rescan; } if (e->flags & REF_MODIFY) { if (limit <= 0) { FIB_ITERATE_PUT(fit); ev_schedule(tab->rt_event); return; } rte_modify(e); limit--; goto rescan; } } if (!n->routes) /* Orphaned FIB entry */ { FIB_ITERATE_PUT(fit); fib_delete(&tab->fib, n); goto again; } } FIB_ITERATE_END; #ifdef DEBUGGING fib_check(&tab->fib); #endif tab->gc_counter = 0; tab->gc_time = current_time(); /* state change 2->0, 3->1 */ tab->prune_state &= 1; if (tab->prune_state > 0) ev_schedule(tab->rt_event); /* FIXME: This should be handled in a better way */ rt_prune_sources(); /* Close flushed channels */ WALK_LIST2_DELSAFE(c, n, x, tab->channels, table_node) if (c->flush_active) { c->flush_active = 0; channel_set_state(c, CS_DOWN); } return; } void rt_preconfig(struct config *c) { init_list(&c->tables); rt_new_table(cf_get_symbol("master4"), NET_IP4); rt_new_table(cf_get_symbol("master6"), NET_IP6); } /* * Some functions for handing internal next hop updates * triggered by rt_schedule_nhu(). */ static inline int rta_next_hop_outdated(rta *a) { struct hostentry *he = a->hostentry; if (!he) return 0; if (!he->src) return a->dest != RTD_UNREACHABLE; return (a->dest != he->dest) || (a->igp_metric != he->igp_metric) || (!he->nexthop_linkable) || !nexthop_same(&(a->nh), &(he->src->nh)); } void rta_apply_hostentry(rta *a, struct hostentry *he, mpls_label_stack *mls) { a->hostentry = he; a->dest = he->dest; a->igp_metric = he->igp_metric; if (a->dest != RTD_UNICAST) { /* No nexthop */ no_nexthop: a->nh = (struct nexthop) {}; if (mls) { /* Store the label stack for later changes */ a->nh.labels_orig = a->nh.labels = mls->len; memcpy(a->nh.label, mls->stack, mls->len * sizeof(u32)); } return; } if (((!mls) || (!mls->len)) && he->nexthop_linkable) { /* Just link the nexthop chain, no label append happens. */ memcpy(&(a->nh), &(he->src->nh), nexthop_size(&(he->src->nh))); return; } struct nexthop *nhp = NULL, *nhr = NULL; int skip_nexthop = 0; for (struct nexthop *nh = &(he->src->nh); nh; nh = nh->next) { if (skip_nexthop) skip_nexthop--; else { nhr = nhp; nhp = (nhp ? (nhp->next = lp_alloc(rte_update_pool, NEXTHOP_MAX_SIZE)) : &(a->nh)); } memset(nhp, 0, NEXTHOP_MAX_SIZE); nhp->iface = nh->iface; nhp->weight = nh->weight; if (mls) { nhp->labels = nh->labels + mls->len; nhp->labels_orig = mls->len; if (nhp->labels <= MPLS_MAX_LABEL_STACK) { memcpy(nhp->label, nh->label, nh->labels * sizeof(u32)); /* First the hostentry labels */ memcpy(&(nhp->label[nh->labels]), mls->stack, mls->len * sizeof(u32)); /* Then the bottom labels */ } else { log(L_WARN "Sum of label stack sizes %d + %d = %d exceedes allowed maximum (%d)", nh->labels, mls->len, nhp->labels, MPLS_MAX_LABEL_STACK); skip_nexthop++; continue; } } else if (nh->labels) { nhp->labels = nh->labels; nhp->labels_orig = 0; memcpy(nhp->label, nh->label, nh->labels * sizeof(u32)); } if (ipa_nonzero(nh->gw)) { nhp->gw = nh->gw; /* Router nexthop */ nhp->flags |= (nh->flags & RNF_ONLINK); } else if (!(nh->iface->flags & IF_MULTIACCESS) || (nh->iface->flags & IF_LOOPBACK)) nhp->gw = IPA_NONE; /* PtP link - no need for nexthop */ else if (ipa_nonzero(he->link)) nhp->gw = he->link; /* Device nexthop with link-local address known */ else nhp->gw = he->addr; /* Device nexthop with link-local address unknown */ } if (skip_nexthop) if (nhr) nhr->next = NULL; else { a->dest = RTD_UNREACHABLE; log(L_WARN "No valid nexthop remaining, setting route unreachable"); goto no_nexthop; } } static inline struct rte_storage * rt_next_hop_update_rte(struct rte_storage *old) { rta *a = alloca(RTA_MAX_SIZE); memcpy(a, old->attrs, rta_size(old->attrs)); mpls_label_stack mls = { .len = a->nh.labels_orig }; memcpy(mls.stack, &a->nh.label[a->nh.labels - mls.len], mls.len * sizeof(u32)); rta_apply_hostentry(a, old->attrs->hostentry, &mls); a->cached = 0; rte e = { .attrs = a, .net = old->net->n.addr, .src = old->src, }; rte_trace_in(D_ROUTES, old->sender->proto, &e, "updated"); struct rte_storage *new = rte_store(&e, old->net); rte_copy_metadata(new, old); return new; } static inline int rt_next_hop_update_net(rtable *tab, net *n) { struct rte_storage *new, **new_best; int count = 0; int free_old_best = 0; struct rte_storage *old_best = n->routes; if (!old_best) return 0; for (struct rte_storage **k = &n->routes, *e; e = *k; k = &e->next) if (rta_next_hop_outdated(e->attrs)) { new = rt_next_hop_update_rte(e); *k = new; rte_announce_i(tab, RA_ANY, n, new, e, NULL, NULL); /* Call a pre-comparison hook */ /* Not really an efficient way to compute this */ if (e->src->proto->rte_recalculate) e->src->proto->rte_recalculate(tab, n, new, e, NULL); if (e != old_best) rte_free(e); else /* Freeing of the old best rte is postponed */ free_old_best = 1; e = new; count++; } if (!count) return 0; /* Find the new best route */ new_best = NULL; for (struct rte_storage **k = &n->routes, *e; e = *k; k = &e->next) { if (!new_best || rte_better(e, *new_best)) new_best = k; } /* Relink the new best route to the first position */ new = *new_best; if (new != n->routes) { *new_best = new->next; new->next = n->routes; n->routes = new; } /* Announce the new best route */ if (new != old_best) { rte nloc = rte_copy(new); rte_trace_in(D_ROUTES, new->sender->proto, &nloc, "updated [best]"); } /* Propagate changes */ rte_announce_i(tab, RA_UNDEF, n, NULL, NULL, n->routes, old_best); if (free_old_best) rte_free(old_best); return count; } static void rt_next_hop_update(rtable *tab) { struct fib_iterator *fit = &tab->nhu_fit; int max_feed = 32; if (tab->nhu_state == NHU_CLEAN) return; if (tab->nhu_state == NHU_SCHEDULED) { FIB_ITERATE_INIT(fit, &tab->fib); tab->nhu_state = NHU_RUNNING; } FIB_ITERATE_START(&tab->fib, fit, net, n) { if (max_feed <= 0) { FIB_ITERATE_PUT(fit); ev_schedule(tab->rt_event); return; } max_feed -= rt_next_hop_update_net(tab, n); } FIB_ITERATE_END; /* State change: * NHU_DIRTY -> NHU_SCHEDULED * NHU_RUNNING -> NHU_CLEAN */ tab->nhu_state &= 1; if (tab->nhu_state != NHU_CLEAN) ev_schedule(tab->rt_event); } struct rtable_config * rt_new_table(struct symbol *s, uint addr_type) { /* Hack that allows to 'redefine' the master table */ if ((s->class == SYM_TABLE) && (s->table == new_config->def_tables[addr_type]) && ((addr_type == NET_IP4) || (addr_type == NET_IP6))) return s->table; struct rtable_config *c = cfg_allocz(sizeof(struct rtable_config)); cf_define_symbol(s, SYM_TABLE, table, c); c->name = s->name; c->addr_type = addr_type; c->gc_max_ops = 1000; c->gc_min_time = 5; add_tail(&new_config->tables, &c->n); /* First table of each type is kept as default */ if (! new_config->def_tables[addr_type]) new_config->def_tables[addr_type] = c; return c; } /** * rt_lock_table - lock a routing table * @r: routing table to be locked * * Lock a routing table, because it's in use by a protocol, * preventing it from being freed when it gets undefined in a new * configuration. */ void rt_lock_table(rtable *r) { r->use_count++; } /** * rt_unlock_table - unlock a routing table * @r: routing table to be unlocked * * Unlock a routing table formerly locked by rt_lock_table(), * that is decrease its use count and delete it if it's scheduled * for deletion by configuration changes. */ void rt_unlock_table(rtable *r) { if (!--r->use_count && r->deleted) { struct config *conf = r->deleted; DBG("Deleting routing table %s\n", r->name); r->config->table = NULL; if (r->hostcache) rt_free_hostcache(r); rem_node(&r->n); fib_free(&r->fib); hmap_free(&r->id_map); rfree(r->rt_event); mb_free(r); config_del_obstacle(conf); } } static struct rtable_config * rt_find_table_config(struct config *cf, char *name) { struct symbol *sym = cf_find_symbol(cf, name); return (sym && (sym->class == SYM_TABLE)) ? sym->table : NULL; } /** * rt_commit - commit new routing table configuration * @new: new configuration * @old: original configuration or %NULL if it's boot time config * * Scan differences between @old and @new configuration and modify * the routing tables according to these changes. If @new defines a * previously unknown table, create it, if it omits a table existing * in @old, schedule it for deletion (it gets deleted when all protocols * disconnect from it by calling rt_unlock_table()), if it exists * in both configurations, leave it unchanged. */ void rt_commit(struct config *new, struct config *old) { struct rtable_config *o, *r; DBG("rt_commit:\n"); if (old) { WALK_LIST(o, old->tables) { rtable *ot = o->table; if (!ot->deleted) { r = rt_find_table_config(new, o->name); if (r && (r->addr_type == o->addr_type) && !new->shutdown) { DBG("\t%s: same\n", o->name); r->table = ot; ot->name = r->name; ot->config = r; if (o->sorted != r->sorted) log(L_WARN "Reconfiguration of rtable sorted flag not implemented"); } else { DBG("\t%s: deleted\n", o->name); ot->deleted = old; config_add_obstacle(old); rt_lock_table(ot); rt_unlock_table(ot); } } } } WALK_LIST(r, new->tables) if (!r->table) { rtable *t = mb_allocz(rt_table_pool, sizeof(struct rtable)); DBG("\t%s: created\n", r->name); rt_setup(rt_table_pool, t, r); add_tail(&routing_tables, &t->n); r->table = t; } DBG("\tdone\n"); } static uint rt_feed_channel_net_internal(struct channel *c, net *nn) { struct rte_export_internal rei = { .net = nn, .new_best = nn->routes, .new = nn->routes, .refeed = 1, }; rte_update_lock(); if (c->ra_mode == RA_ANY) { uint cnt = 0; for (rei.new = nn->routes; rei.new; rei.new = rei.new->next) if (rte_is_valid(rei.new)) rte_export(c, &rei), cnt++; return cnt; } else { rte_export(c, &rei); return 1; } rte_update_unlock(); } void rt_feed_channel_net(struct channel *c, net_addr *n) { net *nn = net_find(c->table, n); if (!nn) return; rt_feed_channel_net_internal(c, nn); } /** * rt_feed_channel - advertise all routes to a channel * @c: channel to be fed * * This function performs one pass of advertisement of routes to a channel that * is in the ES_FEEDING state. It is called by the protocol code as long as it * has something to do. (We avoid transferring all the routes in single pass in * order not to monopolize CPU time.) */ int rt_feed_channel(struct channel *c) { struct fib_iterator *fit = &c->feed_fit; int max_feed = 256; ASSERT(c->export_state == ES_FEEDING); if (!c->feed_active) { FIB_ITERATE_INIT(fit, &c->table->fib); c->feed_active = 1; } FIB_ITERATE_START(&c->table->fib, fit, net, n) { if (max_feed <= 0) { FIB_ITERATE_PUT(fit); return 0; } max_feed -= rt_feed_channel_net_internal(c, n); } FIB_ITERATE_END; c->feed_active = 0; return 1; } /** * rt_feed_baby_abort - abort protocol feeding * @c: channel * * This function is called by the protocol code when the protocol stops or * ceases to exist during the feeding. */ void rt_feed_channel_abort(struct channel *c) { if (c->feed_active) { /* Unlink the iterator */ fit_get(&c->table->fib, &c->feed_fit); c->feed_active = 0; } } /* * Import table */ static int rte_update_in(struct channel *c, rte *new) { struct rtable *tab = c->in_table; struct rte_storage *old, **pos; net *net; if (new->attrs) { net = net_get(tab, new->net); if (!rta_is_cached(new->attrs)) new->attrs = rta_lookup(new->attrs); } else { net = net_find(tab, new->net); if (!net) goto drop_withdraw; } /* Find the old rte */ for (pos = &net->routes; old = *pos; pos = &old->next) if (old->src == new->src) { if (new->attrs && rte_same(old, new, 0)) { /* Refresh the old rte, continue with update to main rtable */ if (old->flags & (REF_STALE | REF_DISCARD | REF_MODIFY)) { old->flags &= ~(REF_STALE | REF_DISCARD | REF_MODIFY); return 1; } goto drop_update; } /* Move iterator if needed */ if (old == c->reload_next_rte) c->reload_next_rte = old->next; /* Remove the old rte */ *pos = old->next; rte_free(old); tab->rt_count--; break; } if (!new->attrs) { if (!old) goto drop_withdraw; return 1; } struct channel_limit *l = &c->rx_limit; if (l->action && !old) { if (tab->rt_count >= l->limit) channel_notify_limit(c, l, PLD_RX, tab->rt_count); if (l->state == PLS_BLOCKED) { rte_trace_in(D_FILTERS, c->proto, new, "ignored [limit]"); goto drop_update; } } /* Insert the new rte */ struct rte_storage *e = rte_store(new, net); e->sender = c; e->lastmod = current_time(); e->next = *pos; *pos = e; tab->rt_count++; return 1; drop_update: c->stats.imp_updates_received++; c->stats.imp_updates_ignored++; return 0; drop_withdraw: c->stats.imp_withdraws_received++; c->stats.imp_withdraws_ignored++; return 0; } int rt_reload_channel(struct channel *c) { struct rtable *tab = c->in_table; struct fib_iterator *fit = &c->reload_fit; int max_feed = 64; ASSERT(c->channel_state == CS_UP); if (!c->reload_active) { FIB_ITERATE_INIT(fit, &tab->fib); c->reload_active = 1; } do { for (struct rte_storage *e = c->reload_next_rte; e; e = e->next) { if (max_feed-- <= 0) { c->reload_next_rte = e; debug("%s channel reload burst split (max_feed=%d)", c->proto->name, max_feed); return 0; } rte eloc = rte_copy(e); rte_update2(c, &eloc); } c->reload_next_rte = NULL; FIB_ITERATE_START(&tab->fib, fit, net, n) { if (c->reload_next_rte = n->routes) { FIB_ITERATE_PUT_NEXT(fit, &tab->fib); break; } } FIB_ITERATE_END; } while (c->reload_next_rte); c->reload_active = 0; return 1; } void rt_reload_channel_abort(struct channel *c) { if (c->reload_active) { /* Unlink the iterator */ fit_get(&c->in_table->fib, &c->reload_fit); c->reload_next_rte = NULL; c->reload_active = 0; } } void rt_prune_sync(rtable *t, int all) { FIB_WALK(&t->fib, net, n) { struct rte_storage *e, **ee = &n->routes; while (e = *ee) { if (all || (e->flags & (REF_STALE | REF_DISCARD))) { *ee = e->next; rte_free(e); t->rt_count--; } else ee = &e->next; } } FIB_WALK_END; } /* * Export table */ int rte_update_out(struct channel *c, rte *new, rte *old, struct rte_storage **old_stored, int refeed) { struct rtable *tab = c->out_table; struct rte_storage **pos; net *net; if (new->attrs) { net = net_get(tab, new->net); if (!rta_is_cached(new->attrs)) new->attrs = rta_lookup(new->attrs); } else { net = net_find(tab, old->net); if (!net) goto drop_withdraw; } /* Find the old rte */ for (pos = &net->routes; *pos; pos = &(*pos)->next) if ((c->ra_mode != RA_ANY) || ((*pos)->src == old->src)) { if (new && rte_same(*pos, new, 0)) { /* REF_STALE / REF_DISCARD not used in export table */ /* if (old->flags & (REF_STALE | REF_DISCARD | REF_MODIFY)) { old->flags &= ~(REF_STALE | REF_DISCARD | REF_MODIFY); return 1; } */ goto drop_update; } /* Keep the old rte */ *old_stored = *pos; *old = rte_copy(*pos); /* Remove the old rte from the list */ *pos = (*pos)->next; tab->rt_count--; break; } if (!new->attrs) { if (!*old_stored) goto drop_withdraw; return 1; } /* Insert the new rte */ struct rte_storage *e = rte_store(new, net); e->sender = c; e->lastmod = current_time(); e->next = *pos; *pos = e; tab->rt_count++; return 1; drop_update: return refeed; drop_withdraw: return 0; } /* * Hostcache */ static inline u32 hc_hash(ip_addr a, rtable *dep) { return ipa_hash(a) ^ ptr_hash(dep); } static inline void hc_insert(struct hostcache *hc, struct hostentry *he) { uint k = he->hash_key >> hc->hash_shift; he->next = hc->hash_table[k]; hc->hash_table[k] = he; } static inline void hc_remove(struct hostcache *hc, struct hostentry *he) { struct hostentry **hep; uint k = he->hash_key >> hc->hash_shift; for (hep = &hc->hash_table[k]; *hep != he; hep = &(*hep)->next); *hep = he->next; } #define HC_DEF_ORDER 10 #define HC_HI_MARK *4 #define HC_HI_STEP 2 #define HC_HI_ORDER 16 /* Must be at most 16 */ #define HC_LO_MARK /5 #define HC_LO_STEP 2 #define HC_LO_ORDER 10 static void hc_alloc_table(struct hostcache *hc, unsigned order) { uint hsize = 1 << order; hc->hash_order = order; hc->hash_shift = 32 - order; hc->hash_max = (order >= HC_HI_ORDER) ? ~0U : (hsize HC_HI_MARK); hc->hash_min = (order <= HC_LO_ORDER) ? 0U : (hsize HC_LO_MARK); hc->hash_table = mb_allocz(rt_table_pool, hsize * sizeof(struct hostentry *)); } static void hc_resize(struct hostcache *hc, unsigned new_order) { struct hostentry **old_table = hc->hash_table; struct hostentry *he, *hen; uint old_size = 1 << hc->hash_order; uint i; hc_alloc_table(hc, new_order); for (i = 0; i < old_size; i++) for (he = old_table[i]; he != NULL; he=hen) { hen = he->next; hc_insert(hc, he); } mb_free(old_table); } static struct hostentry * hc_new_hostentry(struct hostcache *hc, ip_addr a, ip_addr ll, rtable *dep, unsigned k) { struct hostentry *he = sl_alloc(hc->slab); *he = (struct hostentry) { .addr = a, .link = ll, .tab = dep, .hash_key = k, }; add_tail(&hc->hostentries, &he->ln); hc_insert(hc, he); hc->hash_items++; if (hc->hash_items > hc->hash_max) hc_resize(hc, hc->hash_order + HC_HI_STEP); return he; } static void hc_delete_hostentry(struct hostcache *hc, struct hostentry *he) { rta_free(he->src); rem_node(&he->ln); hc_remove(hc, he); sl_free(hc->slab, he); hc->hash_items--; if (hc->hash_items < hc->hash_min) hc_resize(hc, hc->hash_order - HC_LO_STEP); } static void rt_init_hostcache(rtable *tab) { struct hostcache *hc = mb_allocz(rt_table_pool, sizeof(struct hostcache)); init_list(&hc->hostentries); hc->hash_items = 0; hc_alloc_table(hc, HC_DEF_ORDER); hc->slab = sl_new(rt_table_pool, sizeof(struct hostentry)); hc->lp = lp_new(rt_table_pool, LP_GOOD_SIZE(1024)); hc->trie = f_new_trie(hc->lp, 0); tab->hostcache = hc; } static void rt_free_hostcache(rtable *tab) { struct hostcache *hc = tab->hostcache; node *n; WALK_LIST(n, hc->hostentries) { struct hostentry *he = SKIP_BACK(struct hostentry, ln, n); rta_free(he->src); if (he->uc) log(L_ERR "Hostcache is not empty in table %s", tab->name); } rfree(hc->slab); rfree(hc->lp); mb_free(hc->hash_table); mb_free(hc); } static void rt_notify_hostcache(rtable *tab, net *net) { if (tab->hcu_scheduled) return; if (trie_match_net(tab->hostcache->trie, net->n.addr)) rt_schedule_hcu(tab); } static int if_local_addr(ip_addr a, struct iface *i) { struct ifa *b; WALK_LIST(b, i->addrs) if (ipa_equal(a, b->ip)) return 1; return 0; } u32 rt_get_igp_metric(rta *a) { eattr *ea; if (ea = ea_find(a->eattrs, EA_GEN_IGP_METRIC)) return ea->u.data; #ifdef CONFIG_OSPF if ((a->source == RTS_OSPF) || (a->source == RTS_OSPF_IA) || (a->source == RTS_OSPF_EXT1)) return ea_find(a->eattrs, EA_OSPF_METRIC1)->u.data; #endif #ifdef CONFIG_RIP if (ea = ea_find(a->eattrs, EA_RIP_METRIC)) return ea->u.data; #endif #ifdef CONFIG_BGP if (a->source == RTS_BGP) { u64 metric = bgp_total_aigp_metric(a); return (u32) MIN(metric, (u64) IGP_METRIC_UNKNOWN); } #endif if (a->source == RTS_DEVICE) return 0; return IGP_METRIC_UNKNOWN; } static int rt_update_hostentry(rtable *tab, struct hostentry *he) { rta *old_src = he->src; int direct = 0; int pxlen = 0; /* Reset the hostentry */ he->src = NULL; he->dest = RTD_UNREACHABLE; he->nexthop_linkable = 0; he->igp_metric = 0; net_addr he_addr; net_fill_ip_host(&he_addr, he->addr); net *n = net_route(tab, &he_addr); /* This always returns a valid route or NULL */ if (n) { rta *a = n->routes->attrs; pxlen = n->n.addr->pxlen; if (a->hostentry) { /* Recursive route should not depend on another recursive route */ log(L_WARN "Next hop address %I resolvable through recursive route for %N", he->addr, n->n.addr); goto done; } if (a->dest == RTD_UNICAST) { for (struct nexthop *nh = &(a->nh); nh; nh = nh->next) if (ipa_zero(nh->gw)) { if (if_local_addr(he->addr, nh->iface)) { /* The host address is a local address, this is not valid */ log(L_WARN "Next hop address %I is a local address of iface %s", he->addr, nh->iface->name); goto done; } direct++; } } he->src = rta_clone(a); he->dest = a->dest; he->nexthop_linkable = !direct; he->igp_metric = rt_get_igp_metric(a); } done: /* Add a prefix range to the trie */ trie_add_prefix(tab->hostcache->trie, &he_addr, pxlen, he_addr.pxlen); rta_free(old_src); return old_src != he->src; } static void rt_update_hostcache(rtable *tab) { struct hostcache *hc = tab->hostcache; struct hostentry *he; node *n, *x; /* Reset the trie */ lp_flush(hc->lp); hc->trie = f_new_trie(hc->lp, 0); WALK_LIST_DELSAFE(n, x, hc->hostentries) { he = SKIP_BACK(struct hostentry, ln, n); if (!he->uc) { hc_delete_hostentry(hc, he); continue; } if (rt_update_hostentry(tab, he)) rt_schedule_nhu(he->tab); } tab->hcu_scheduled = 0; } struct hostentry * rt_get_hostentry(rtable *tab, ip_addr a, ip_addr ll, rtable *dep) { struct hostentry *he; if (!tab->hostcache) rt_init_hostcache(tab); u32 k = hc_hash(a, dep); struct hostcache *hc = tab->hostcache; for (he = hc->hash_table[k >> hc->hash_shift]; he != NULL; he = he->next) if (ipa_equal(he->addr, a) && (he->tab == dep)) return he; he = hc_new_hostentry(hc, a, ipa_zero(ll) ? a : ll, dep, k); rt_update_hostentry(tab, he); return he; } /* * Documentation for functions declared inline in route.h */ #if 0 /** * net_find - find a network entry * @tab: a routing table * @addr: address of the network * * net_find() looks up the given network in routing table @tab and * returns a pointer to its &net entry or %NULL if no such network * exists. */ static inline net *net_find(rtable *tab, net_addr *addr) { DUMMY; } /** * net_get - obtain a network entry * @tab: a routing table * @addr: address of the network * * net_get() looks up the given network in routing table @tab and * returns a pointer to its &net entry. If no such entry exists, it's * created. */ static inline net *net_get(rtable *tab, net_addr *addr) { DUMMY; } /** * rte_cow - copy a route for writing * @r: a route entry to be copied * * rte_cow() takes a &rte and prepares it for modification. The exact action * taken depends on the flags of the &rte -- if it's a temporary entry, it's * just returned unchanged, else a new temporary entry with the same contents * is created. * * The primary use of this function is inside the filter machinery -- when * a filter wants to modify &rte contents (to change the preference or to * attach another set of attributes), it must ensure that the &rte is not * shared with anyone else (and especially that it isn't stored in any routing * table). * * Result: a pointer to the new writable &rte. */ static inline rte * rte_cow(rte *r) { DUMMY; } #endif