/* * BIRD Library -- Bitmaps * * (c) 2019 Ondrej Zajicek * (c) 2019 CZ.NIC z.s.p.o. * * Can be freely distributed and used under the terms of the GNU GPL. */ #include #include "nest/bird.h" #include "lib/bitmap.h" #include "lib/bitops.h" #include "lib/resource.h" /* * Basic bitmap */ void bmap_init(struct bmap *b, pool *p, uint size) { b->size = BIRD_ALIGN(size, 4); b->data = mb_allocz(p, b->size); } void bmap_reset(struct bmap *b, uint size) { b->size = BIRD_ALIGN(size, 4); memset(b->data, 0, b->size); } void bmap_grow(struct bmap *b, uint need) { uint size = b->size * 2; while (size < need) size *= 2; uint old_size = b->size; b->size = size; b->data = mb_realloc(b->data, b->size); ASSERT(size >= old_size); memset(b->data + (old_size / 4), 0, size - old_size); } void bmap_free(struct bmap *b) { mb_free(b->data); b->size = 0; b->data = NULL; } /* * Hierarchical bitmap */ #define B256_SIZE(b) BIRD_ALIGN(b, 32) #define B256_STEP(b) (BIRD_ALIGN(b, 8192) >> 8) void hmap_init(struct hmap *b, pool *p, uint size) { b->size[0] = B256_SIZE(size); b->size[1] = B256_STEP(b->size[0]); b->size[2] = B256_STEP(b->size[1]); b->size[3] = sizeof(b->root); b->data[0] = mb_allocz(p, b->size[0]); b->data[1] = mb_allocz(p, b->size[1]); b->data[2] = mb_allocz(p, b->size[2]); b->data[3] = b->root; memset(b->root, 0, sizeof(b->root)); } static void hmap_grow(struct hmap *b, uint need) { uint size = b->size[0] * 2; while (size < need) size *= 2; for (uint i = 0; i < 3; i++) { uint old_size = b->size[i]; b->size[i] = size; b->data[i] = mb_realloc(b->data[i], b->size[i]); ASSERT(size >= old_size); memset(b->data[i] + (old_size / 4), 0, size - old_size); size = B256_STEP(size); } } void hmap_free(struct hmap *b) { mb_free(b->data[0]); mb_free(b->data[1]); mb_free(b->data[2]); memset(b, 0, sizeof(struct hmap)); } static inline int b256_and(u32 *p) { for (int i = 0; i < 8; i++) if (~p[i]) return 0; return 1; } void hmap_set(struct hmap *b, uint n) { if (n >= hmap_max(b)) hmap_grow(b, n/8 + 1); for (int i = 0; i < 4; i++) { BIT32_SET(b->data[i], n); n = n >> 8; /* Continue if all bits in 256-bit block are set */ if (! b256_and(b->data[i] + 8*n)) break; } } void hmap_clear(struct hmap *b, uint n) { if (n >= hmap_max(b)) return; for (int i = 0; i < 4; i++) { BIT32_CLR(b->data[i], n); n = n >> 8; } } static inline int b256_first_zero(u32 *p) { for (int i = 0; i < 8; i++) if (~p[i]) return 32*i + u32_ctz(~p[i]); return 256; } u32 hmap_first_zero(struct hmap *b) { u32 n = 0; for (int i = 3; i >= 0; i--) { if (32*n >= b->size[i]) return hmap_max(b); u32 *p = b->data[i] + 8*n; n = (n << 8) + b256_first_zero(p); } return n; } void hmap_check(struct hmap *b) { for (int i = 0; i < 2; i++) { int max = b->size[i] / 32; for (int j = 0; j < max; j++) { int x = b256_and(b->data[i] + 8*j); int y = !!BIT32_TEST(b->data[i+1], j); if (x != y) bug("Inconsistent data on %d:%d (%d vs %d)", i, j, x, y); } } } /* * Indirect bitmap for MPLS labels (20 bit range) */ void lmap_init(struct lmap *b, pool *p) { b->slab = sl_new(p, 128); b->size = 8; b->data = mb_allocz(p, b->size * sizeof(u32 *)); b->root = sl_allocz(b->slab); } static void lmap_grow(struct lmap *b, uint need) { uint old_size = b->size; while (b->size < need) b->size *= 2; b->data = mb_realloc(b->data, b->size * sizeof(u32 *)); memset(b->data + old_size, 0, (b->size - old_size) * sizeof(u32 *)); } void lmap_free(struct lmap *b) { rfree(b->slab); mb_free(b->data); memset(b, 0, sizeof(struct lmap)); } static inline int b1024_and(u32 *p) { for (int i = 0; i < 32; i++) if (~p[i]) return 0; return 1; } static inline int b1024_or(u32 *p) { for (int i = 0; i < 32; i++) if (p[i]) return 1; return 0; } int lmap_test(struct lmap *b, uint n) { uint n0 = n >> 10; uint n1 = n & 0x3ff; return (n0 < b->size) && b->data[n0] && BIT32_TEST(b->data[n0], n1); } void lmap_set(struct lmap *b, uint n) { uint n0 = n >> 10; uint n1 = n & 0x3ff; if (n0 >= b->size) lmap_grow(b, n0 + 1); if (! b->data[n0]) b->data[n0] = sl_allocz(b->slab); BIT32_SET(b->data[n0], n1); if (b1024_and(b->data[n0])) BIT32_SET(b->root, n0); } void lmap_clear(struct lmap *b, uint n) { uint n0 = n >> 10; uint n1 = n & 0x3ff; if (n0 >= b->size) return; if (! b->data[n0]) return; BIT32_CLR(b->data[n0], n1); BIT32_CLR(b->root, n0); if (!b1024_or(b->data[n0])) { sl_free(b->data[n0]); b->data[n0] = NULL; } } static inline int b1024_first_zero(u32 *p) { for (int i = 0; i < 32; i++) if (~p[i]) return 32*i + u32_ctz(~p[i]); return 1024; } uint lmap_first_zero(struct lmap *b) { uint n0 = b1024_first_zero(b->root); uint n1 = ((n0 < b->size) && b->data[n0]) ? b1024_first_zero(b->data[n0]) : 0; return (n0 << 10) + n1; } static uint b1024_first_zero_in_range(u32 *p, uint lo, uint hi) { uint lo0 = lo >> 5; uint lo1 = lo & 0x1f; uint hi0 = hi >> 5; uint hi1 = hi & 0x1f; u32 mask = (1 << lo1) - 1; u32 val; for (uint i = lo0; i < hi0; i++) { val = p[i] | mask; mask = 0; if (~val) return 32*i + u32_ctz(~val); } if (hi1) { mask |= ~((1u << hi1) - 1); val = p[hi0] | mask; if (~val) return 32*hi0 + u32_ctz(~val); } return hi; } uint lmap_first_zero_in_range(struct lmap *b, uint lo, uint hi) { uint lo0 = lo >> 10; uint lo1 = lo & 0x3ff; uint hi0 = hi >> 10; uint hi1 = hi & 0x3ff; if (lo1) { uint max = (lo0 == hi0) ? hi1 : 1024; uint n0 = lo0; uint n1 = ((n0 < b->size) && b->data[n0]) ? b1024_first_zero_in_range(b->data[n0], lo1, max) : lo1; if (n1 < 1024) return (n0 << 10) + n1; lo0++; lo1 = 0; } if (lo0 < hi0) { uint n0 = b1024_first_zero_in_range(b->root, lo0, hi0); if (n0 < hi0) { uint n1 = ((n0 < b->size) && b->data[n0]) ? b1024_first_zero(b->data[n0]) : 0; return (n0 << 10) + n1; } } if (hi1) { uint n0 = hi0; uint n1 = ((n0 < b->size) && b->data[n0]) ? b1024_first_zero_in_range(b->data[n0], 0, hi1) : 0; return (n0 << 10) + n1; } return hi; } static inline int b1024_last_one(u32 *p) { for (int i = 31; i >= 0; i--) if (p[i]) return 32*i + (31 - u32_clz(p[i])); return 1024; } static uint b1024_last_one_in_range(u32 *p, uint lo, uint hi) { uint lo0 = lo >> 5; uint lo1 = lo & 0x1f; uint hi0 = hi >> 5; uint hi1 = hi & 0x1f; u32 mask = (1u << hi1) - 1; u32 val; for (int i = hi0; i > (int) lo0; i--) { val = p[i] & mask; mask = ~0; if (val) return 32*i + (31 - u32_clz(val)); } { mask &= ~((1u << lo1) - 1); val = p[lo0] & mask; if (val) return 32*lo0 + (31 - u32_clz(val)); } return hi; } uint lmap_last_one_in_range(struct lmap *b, uint lo, uint hi) { uint lo0 = lo >> 10; uint lo1 = lo & 0x3ff; uint hi0 = hi >> 10; uint hi1 = hi & 0x3ff; if (hi1 && (hi0 < b->size) && b->data[hi0]) { uint min = (lo0 == hi0) ? lo1 : 0; uint n0 = hi0; uint n1 = b1024_last_one_in_range(b->data[n0], min, hi1); if (n1 < hi1) return (n0 << 10) + n1; } for (int i = (int)MIN(hi0, b->size) - 1; i >= (int) lo0; i--) { if (! b->data[i]) continue; uint n0 = i; uint n1 = b1024_last_one(b->data[n0]); if ((n0 == lo0) && (n1 < lo1)) return hi; return (n0 << 10) + n1; } return hi; } void lmap_check(struct lmap *b) { for (int i = 0; i < (int) b->size; i++) { int x = b->data[i] && b1024_and(b->data[i]); int y = !!BIT32_TEST(b->root, i); if (x != y) bug("Inconsistent data on %d (%d vs %d)", i, x, y); } }