/* * BIRD Internet Routing Daemon -- The Internet Protocol * * (c) 1998 Martin Mares * * Can be freely distributed and used under the terms of the GNU GPL. */ #ifndef _BIRD_IP_H_ #define _BIRD_IP_H_ #include "lib/endian.h" #include "lib/string.h" #include "lib/bitops.h" #include "lib/unaligned.h" #define IP4_MIN_MTU 576 #define IP6_MIN_MTU 1280 #define IP4_OSPF_ALL_ROUTERS ipa_build4(224, 0, 0, 5) #define IP4_OSPF_DES_ROUTERS ipa_build4(224, 0, 0, 6) #define IP6_ALL_NODES ipa_build6(0xFF020000, 0, 0, 1) #define IP6_ALL_ROUTERS ipa_build6(0xFF020000, 0, 0, 2) #define IP6_OSPF_ALL_ROUTERS ipa_build6(0xFF020000, 0, 0, 5) #define IP6_OSPF_DES_ROUTERS ipa_build6(0xFF020000, 0, 0, 6) #define IP4_NONE _MI4(0) #define IP6_NONE _MI6(0,0,0,0) #define IPA_NONE IP6_NONE #define IP_PREC_INTERNET_CONTROL 0xc0 /* * Use the structural representation when you want to make sure * nobody unauthorized attempts to handle ip_addr as number. */ #ifdef DEBUGGING typedef struct ip4_addr { u32 addr; } ip4_addr; #define _MI4(x) ((struct ip4_addr) { x }) #define _I(x) (x).addr #else typedef u32 ip4_addr; #define _MI4(x) (x) #define _I(x) (x) #endif typedef struct ip6_addr { u32 addr[4]; } ip6_addr; #define _MI6(a,b,c,d) ((struct ip6_addr) {{ a, b, c, d }}) #define _I0(a) ((a).addr[0]) #define _I1(a) ((a).addr[1]) #define _I2(a) ((a).addr[2]) #define _I3(a) ((a).addr[3]) typedef ip6_addr ip_addr; /* * ip_classify() returns either a negative number for invalid addresses * or scope OR'ed together with address type. */ #define IADDR_INVALID -1 #define IADDR_SCOPE_MASK 0xfff #define IADDR_HOST 0x1000 #define IADDR_BROADCAST 0x2000 #define IADDR_MULTICAST 0x4000 /* * Address scope */ #define SCOPE_HOST 0 #define SCOPE_LINK 1 #define SCOPE_SITE 2 #define SCOPE_ORGANIZATION 3 #define SCOPE_UNIVERSE 4 #define SCOPE_UNDEFINED 5 #define ipa_equal(x,y) ip6_equal(x,y) #define ipa_zero(x) ip6_zero(x) #define ipa_nonzero(x) ip6_nonzero(x) #define ipa_and(x,y) ip6_and(x,y) #define ipa_or(x,y) ip6_or(x,y) #define ipa_xor(x,y) ip6_xor(x,y) #define ipa_not(x) ip6_not(x) /* These should be used when both IPv4 and IPv6 zero addresses should be checked */ /* Zero address is either token for invalid/unused, or prefix for default route */ static inline int ipa_zero2(ip6_addr a) { return !_I0(a) && !_I1(a) && ((_I2(a) == 0) || (_I2(a) == 0xffff)) && !_I3(a); } static inline int ipa_nonzero2(ip6_addr a) { return _I0(a) || _I1(a) || ((_I2(a) != 0) && (_I2(a) != 0xffff)) || _I3(a); } #define ip4_equal(x,y) (_I(x) == _I(y)) #define ip4_zero(x) (!_I(x)) #define ip4_nonzero(x) _I(x) #define ip4_and(x,y) _MI4(_I(x) & _I(y)) #define ip4_or(x,y) _MI4(_I(x) | _I(y)) #define ip4_xor(x,y) _MI4(_I(x) ^ _I(y)) #define ip4_not(x) _MI4(~_I(x)) static inline int ip6_equal(ip6_addr a, ip6_addr b) { return _I0(a) == _I0(b) && _I1(a) == _I1(b) && _I2(a) == _I2(b) && _I3(a) == _I3(b); } static inline int ip6_zero(ip6_addr a) { return !_I0(a) && !_I1(a) && !_I2(a) && !_I3(a); } static inline int ip6_nonzero(ip6_addr a) { return _I0(a) || _I1(a) || _I2(a) || _I3(a); } static inline ip6_addr ip6_and(ip6_addr a, ip6_addr b) { return _MI6(_I0(a) & _I0(b), _I1(a) & _I1(b), _I2(a) & _I2(b), _I3(a) & _I3(b)); } static inline ip6_addr ip6_or(ip6_addr a, ip6_addr b) { return _MI6(_I0(a) | _I0(b), _I1(a) | _I1(b), _I2(a) | _I2(b), _I3(a) | _I3(b)); } static inline ip6_addr ip6_xor(ip6_addr a, ip6_addr b) { return _MI6(_I0(a) ^ _I0(b), _I1(a) ^ _I1(b), _I2(a) ^ _I2(b), _I3(a) ^ _I3(b)); } static inline ip6_addr ip6_not(ip6_addr a) { return _MI6(~_I0(a), ~_I1(a), ~_I2(a), ~_I3(a)); } #define ipa_from_ip4(x) _MI6(0,0,0xffff,_I(x)) #define ipa_from_ip6(x) x #define ipa_from_u32(x) ipa_from_ip4(ip4_from_u32(x)) #define ipa_to_ip4(x) _MI4(_I3(x)) #define ipa_to_ip6(x) x #define ipa_to_u32(x) ip4_to_u32(ipa_to_ip4(x)) #define ip4_from_u32(x) _MI4(x) #define ip4_to_u32(x) _I(x) #define ipa_is_ip4(a) ip6_is_v4mapped(a) #define ipa_build4(a,b,c,d) ipa_from_ip4(ip4_build(a,b,c,d)) #define ipa_build6(a,b,c,d) _MI6(a,b,c,d) #define ip4_build(a,b,c,d) _MI4(((a) << 24) | ((b) << 16) | ((c) << 8) | (d)) #define ip6_build(a,b,c,d) _MI6(a,b,c,d) #define ipa_hton(x) x = ip6_hton(x) #define ipa_ntoh(x) x = ip6_ntoh(x) #define ip4_hton(x) _MI4(htonl(_I(x))) #define ip4_ntoh(x) _MI4(ntohl(_I(x))) static inline ip6_addr ip6_hton(ip6_addr a) { return _MI6(htonl(_I0(a)), htonl(_I1(a)), htonl(_I2(a)), htonl(_I3(a))); } static inline ip6_addr ip6_ntoh(ip6_addr a) { return _MI6(ntohl(_I0(a)), ntohl(_I1(a)), ntohl(_I2(a)), ntohl(_I3(a))); } #define ipa_compare(a,b) ip6_compare(a,b) static inline int ip4_compare(ip4_addr a, ip4_addr b) { return (_I(a) > _I(b)) - (_I(a) < _I(b)); } int ip6_compare(ip6_addr a, ip6_addr b); #define ipa_hash(a) ip6_hash(a) static inline unsigned ip4_hash(ip4_addr a) { /* Returns a 16-bit value */ u32 x = _I(a); x ^= x >> 16; x ^= x << 10; return x & 0xffff; } static inline u32 ip4_hash32(ip4_addr a) { /* Returns a 32-bit value, although low-order bits are not mixed */ u32 x = _I(a); x ^= x << 16; x ^= x << 12; return x; } /* * This hash function looks well, but once IPv6 enters * mainstream use, we need to check that it has good * distribution properties on real routing tables. */ static inline unsigned ip6_hash(ip6_addr a) { /* Returns a 16-bit hash key */ u32 x = _I0(a) ^ _I1(a) ^ _I2(a) ^ _I3(a); return (x ^ (x >> 16) ^ (x >> 8)) & 0xffff; } static inline u32 ip6_hash32(ip6_addr a) { /* Returns a 32-bit hash key, although low-order bits are not mixed */ u32 x = _I0(a) ^ _I1(a) ^ _I2(a) ^ _I3(a); return x ^ (x << 16) ^ (x << 24); } #define ipa_classify(x) ip6_classify(&(x)) int ip4_classify(ip4_addr ad); int ip6_classify(ip6_addr *a); static inline int ipa_classify_net(ip_addr a) { return ipa_zero2(a) ? (IADDR_HOST | SCOPE_UNIVERSE) : ipa_classify(a); } #define ipa_is_link_local(a) ip6_is_link_local(a) static inline int ip6_is_link_local(ip6_addr a) { return (_I0(a) & 0xffc00000) == 0xfe800000; } static inline int ip6_is_v4mapped(ip6_addr a) { return _I0(a) == 0 && _I1(a) == 0 && _I2(a) == 0xffff; } #define ipa_mkmask(x) ip6_mkmask(x) #define ipa_mklen(x) ip6_masklen(&x) // XXXX: ipa_masklen() #define ip4_mkmask(x) _MI4(u32_mkmask(x)) #define ip4_masklen(x) u32_masklen(_I(x)) ip6_addr ip6_mkmask(unsigned n); unsigned ip6_masklen(ip_addr *a); // XXXX: int or unsigned? /* ipa_pxlen() requires that x != y */ #define ipa_pxlen(a,b) ip6_pxlen(a,b) static inline u32 ip4_pxlen(ip4_addr a, ip4_addr b) { return 31 - u32_log2(_I(a) ^ _I(b)); } static inline u32 ip6_pxlen(ip6_addr a, ip6_addr b) { int i = 0; i+= (a.addr[i] == b.addr[i]); i+= (a.addr[i] == b.addr[i]); i+= (a.addr[i] == b.addr[i]); i+= (a.addr[i] == b.addr[i]); return 32 * i + 31 - u32_log2(a.addr[i] ^ b.addr[i]); } #define ipa_opposite_m1(x) ip6_opposite_m1(x) #define ipa_opposite_m2(x) ip6_opposite_m2(x) #define ip4_opposite_m1(x) _MI4(_I(x) ^ 1) #define ip4_opposite_m2(x) _MI4(_I(x) ^ 3) static inline ip6_addr ip6_opposite_m1(ip6_addr a) { return _MI6(_I0(a), _I1(a), _I2(a), _I3(a) ^ 1); } static inline ip6_addr ip6_opposite_m2(ip6_addr a) { return _MI6(_I0(a), _I1(a), _I2(a), _I3(a) ^ 3); } // XXXX #define ipa_getbit(a,y) ip6_getbit(a,y) static inline u32 ip4_getbit(ip4_addr a, u32 pos) { return _I(a) & (0x80000000 >> pos); } static inline u32 ip6_getbit(ip6_addr a, u32 pos) { return a.addr[pos / 32] & (0x80000000 >> (pos % 32)); } // XXXX #define ipa_put_addr(buf,a) ip6_put(buf,a) static inline void * ip4_put(void *buf, ip4_addr a) { put_u32(buf, _I(a)); return buf+4; } static inline void * ip6_put(void *buf, ip6_addr a) { a = ip6_hton(a); memcpy(buf, &a, 16); return buf+16; } static inline ip4_addr ip4_get(void *buf) { return _MI4(get_u32(buf)); } static inline ip6_addr ip6_get(void *buf) { ip6_addr a; memcpy(&a, buf, 16); return ip6_ntoh(a); } static inline void * ip4_put32(void *buf, ip4_addr a) { *(u32 *)buf = htonl(_I(a)); return buf+4; } static inline void * ip6_put32(void *buf, ip6_addr a) { u32 *b = buf; b[0] = htonl(_I0(a)); b[1] = htonl(_I1(a)); b[2] = htonl(_I2(a)); b[3] = htonl(_I3(a)); return buf+16; } static inline void * ip6_put32_ip4(void *buf, ip6_addr a) { *(u32 *)buf = htonl(_I3(a)); return buf+4; } static inline ip6_addr ipa_get_in4(struct in_addr *in) { return ipa_from_ip4(ip4_ntoh(*(ip4_addr *) in)); } static inline ip6_addr ipa_get_in6(struct in6_addr *in) { return ip6_ntoh(*(ip6_addr *) in); } /* * Conversions between internal and string representation */ char *ip4_ntop(ip4_addr a, char *b); char *ip6_ntop(ip6_addr a, char *b); static inline char * ip4_ntox(ip4_addr a, char *b) { return b + bsprintf(b, "%08x", _I(a)); } static inline char * ip6_ntox(ip6_addr a, char *b) { return b + bsprintf(b, "%08x.%08x.%08x.%08x", _I0(a), _I1(a), _I2(a), _I3(a)); } int ip4_pton(char *a, ip4_addr *o); int ip6_pton(char *a, ip6_addr *o); ip4_addr ip4_class_mask(ip4_addr a); // XXXX process rest struct prefix { ip_addr addr; unsigned int len; }; #define ip_is_prefix(a,l) (!ipa_nonzero(ipa_and(a, ipa_not(ipa_mkmask(l))))) #define ipa_in_net(x,n,p) (ipa_zero(ipa_and(ipa_xor((n),(x)),ipa_mkmask(p)))) #define net_in_net(n1,l1,n2,l2) (((l1) >= (l2)) && (ipa_zero(ipa_and(ipa_xor((n1),(n2)),ipa_mkmask(l2))))) char *ip_scope_text(unsigned); /* * Network prefixes */ /* #define MAX_PREFIX_LENGTH 32 #define BITS_PER_IP_ADDRESS 32 #define STD_ADDRESS_P_LENGTH 15 #define SIZE_OF_IP_HEADER 24 */ #define MAX_PREFIX_LENGTH 128 #define BITS_PER_IP_ADDRESS 128 #define STD_ADDRESS_P_LENGTH 39 #define SIZE_OF_IP_HEADER 40 #define MAX_ADDRESS_P_LENGTH 40 #define ipa_class_mask(x) _MI4(ipv4_class_mask(_I(x))) /* #define ip_skip_header(x, y) ipv4_skip_header(x, y) */ byte *ipv4_skip_header(byte *, int *); struct fib_node; void fn_print(char *buf, int buflen, struct fib_node *n); /* In IPv6, SOCK_RAW does not return packet header */ #define ip_skip_header(x, y) x #endif