/* * BIRD -- The Babel protocol * * Copyright (c) 2015--2016 Toke Hoiland-Jorgensen * (c) 2016--2017 Ondrej Zajicek * (c) 2016--2017 CZ.NIC z.s.p.o. * * Can be freely distributed and used under the terms of the GNU GPL. * * This file contains the packet and TLV handling code for the protocol. */ #include "babel.h" #include "lib/mac.h" struct babel_pkt_header { u8 magic; u8 version; u16 length; } PACKED; struct babel_tlv { u8 type; u8 length; u8 value[0]; } PACKED; struct babel_tlv_ack_req { u8 type; u8 length; u16 reserved; u16 nonce; u16 interval; } PACKED; struct babel_tlv_ack { u8 type; u8 length; u16 nonce; } PACKED; struct babel_tlv_hello { u8 type; u8 length; u16 flags; u16 seqno; u16 interval; } PACKED; struct babel_tlv_ihu { u8 type; u8 length; u8 ae; u8 reserved; u16 rxcost; u16 interval; u8 addr[0]; } PACKED; struct babel_subtlv_timestamp { u8 type; u8 length; u32 tstamp; u32 tstamp_rcvd; /* only used in IHU */ } PACKED; struct babel_tlv_router_id { u8 type; u8 length; u16 reserved; u64 router_id; } PACKED; struct babel_tlv_next_hop { u8 type; u8 length; u8 ae; u8 reserved; u8 addr[0]; } PACKED; struct babel_tlv_update { u8 type; u8 length; u8 ae; u8 flags; u8 plen; u8 omitted; u16 interval; u16 seqno; u16 metric; u8 addr[0]; } PACKED; struct babel_tlv_route_request { u8 type; u8 length; u8 ae; u8 plen; u8 addr[0]; } PACKED; struct babel_tlv_seqno_request { u8 type; u8 length; u8 ae; u8 plen; u16 seqno; u8 hop_count; u8 reserved; u64 router_id; u8 addr[0]; } PACKED; struct babel_subtlv_source_prefix { u8 type; u8 length; u8 plen; u8 addr[0]; } PACKED; struct babel_tlv_mac { u8 type; u8 length; u8 mac[0]; } PACKED; struct babel_tlv_pc { u8 type; u8 length; u32 pc; u8 index[0]; } PACKED; struct babel_tlv_challenge { u8 type; u8 length; u8 nonce[0]; } PACKED; struct babel_mac_pseudoheader { u8 src_addr[16]; u16 src_port; u8 dst_addr[16]; u16 dst_port; } PACKED; /* Hello flags */ #define BABEL_HF_UNICAST 0x8000 /* Update flags */ #define BABEL_UF_DEF_PREFIX 0x80 #define BABEL_UF_ROUTER_ID 0x40 struct babel_parse_state; struct babel_write_state; struct babel_tlv_data { u8 min_length; int (*read_tlv)(struct babel_tlv *hdr, union babel_msg *m, struct babel_parse_state *state); uint (*write_tlv)(struct babel_tlv *hdr, union babel_msg *m, struct babel_write_state *state, uint max_len); void (*handle_tlv)(union babel_msg *m, struct babel_iface *ifa); }; struct babel_parse_state { const struct babel_tlv_data* (*get_tlv_data)(u8 type); const struct babel_tlv_data* (*get_subtlv_data)(u8 type); struct babel_proto *proto; struct babel_iface *ifa; btime received_time; ip_addr saddr; ip_addr next_hop_ip4; ip_addr next_hop_ip6; u64 router_id; /* Router ID used in subsequent updates */ u8 def_ip6_prefix[16]; /* Implicit IPv6 prefix in network order */ u8 def_ip4_prefix[4]; /* Implicit IPv4 prefix (AE 1) in network order */ u8 def_ip4_via_ip6_prefix[4]; /* Implicit IPv4 prefix (AE 4) in network order */ u8 router_id_seen; /* router_id field is valid */ u8 def_ip6_prefix_seen; /* def_ip6_prefix is valid */ u8 def_ip4_prefix_seen; /* def_ip4_prefix is valid */ u8 def_ip4_via_ip6_prefix_seen; /* def_ip4_via_ip6_prefix is valid */ u8 hello_tstamp_seen; /* pkt contains a hello timestamp */ u8 current_tlv_endpos; /* End of self-terminating TLVs (offset from start) */ u8 sadr_enabled; u8 is_unicast; struct babel_msg_auth auth; }; enum parse_result { PARSE_SUCCESS, PARSE_ERROR, PARSE_IGNORE, }; struct babel_write_state { u64 router_id; u8 router_id_seen; ip_addr next_hop_ip4; ip_addr next_hop_ip6; u8 def_ip6_prefix[16]; /* Implicit IPv6 prefix in network order */ u8 def_ip6_pxlen; }; #define DROP(DSC,VAL) do { err_dsc = DSC; err_val = VAL; goto drop; } while(0) #define DROP1(DSC) do { err_dsc = DSC; goto drop; } while(0) #define LOG_PKT(msg, args...) \ log_rl(&p->log_pkt_tbf, L_REMOTE "%s: " msg, p->p.name, args) #define LOG_WARN(msg, args...) \ log_rl(&p->log_pkt_tbf, L_WARN "%s: " msg, p->p.name, args) #define LOG_PKT_AUTH(msg, args...) \ log_rl(&p->log_pkt_tbf, L_AUTH "%s: " msg, p->p.name, args) #define FIRST_TLV(p) ((struct babel_tlv *) (((struct babel_pkt_header *) p) + 1)) #define NEXT_TLV(t) ((struct babel_tlv *) (((byte *) t) + TLV_LENGTH(t))) #define TLV_LENGTH(t) (t->type == BABEL_TLV_PAD1 ? 1 : t->length + sizeof(struct babel_tlv)) #define TLV_OPT_LENGTH(t) (t->length + sizeof(struct babel_tlv) - sizeof(*t)) #define TLV_HDR(tlv,t,l) ({ tlv->type = t; tlv->length = l - sizeof(struct babel_tlv); }) #define TLV_HDR0(tlv,t) TLV_HDR(tlv, t, tlv_data[t].min_length) #define NET_SIZE(n) BYTES(net_pxlen(n)) /* Helper macros to loop over a series of TLVs. * @start pointer to first TLV (void * or struct babel_tlv *) * @end byte * pointer to TLV stream end * @tlv struct babel_tlv pointer used as iterator * @frame_err boolean (u8) that will be set to 1 if a frame error occurred * @saddr source addr for use in log output * @ifname ifname for use in log output */ #define WALK_TLVS(start, end, tlv, frame_err, saddr, ifname) \ for (tlv = start; \ (byte *)tlv < end; \ tlv = NEXT_TLV(tlv)) \ { \ byte *loop_pos; \ /* Ugly special case */ \ if (tlv->type == BABEL_TLV_PAD1) \ continue; \ \ /* The end of the common TLV header */ \ loop_pos = (byte *)tlv + sizeof(struct babel_tlv); \ if ((loop_pos > end) || (loop_pos + tlv->length > end)) \ { \ LOG_PKT("Bad TLV from %I via %s type %d pos %d - framing error", \ saddr, ifname, tlv->type, (int) ((byte *)tlv - (byte *)start)); \ frame_err = 1; \ break; \ } #define WALK_TLVS_END } static inline uint bytes_equal(u8 *b1, u8 *b2, uint maxlen) { uint i; for (i = 0; (i < maxlen) && (*b1 == *b2); i++, b1++, b2++) ; return i; } static inline uint get_time16(const void *p) { uint v = get_u16(p) * BABEL_TIME_UNITS; return MAX(BABEL_MIN_INTERVAL, v); } static inline void put_time16(void *p, uint v) { put_u16(p, v / BABEL_TIME_UNITS); } static inline void read_ip4_px(net_addr *n, const void *p, uint plen) { ip4_addr addr = {0}; memcpy(&addr, p, BYTES(plen)); net_fill_ip4(n, ip4_ntoh(addr), plen); } static inline void put_ip4_px(void *p, net_addr *n) { ip4_addr addr = ip4_hton(net4_prefix(n)); memcpy(p, &addr, NET_SIZE(n)); } static inline void read_ip6_px(net_addr *n, const void *p, uint plen) { ip6_addr addr = IPA_NONE; memcpy(&addr, p, BYTES(plen)); net_fill_ip6(n, ip6_ntoh(addr), plen); } static inline void put_ip6_px(void *p, net_addr *n) { ip6_addr addr = ip6_hton(net6_prefix(n)); memcpy(p, &addr, NET_SIZE(n)); } static inline ip6_addr get_ip6_ll(const void *p) { return ip6_build(0xfe800000, 0, get_u32(p+0), get_u32(p+4)); } static inline void put_ip6_ll(void *p, ip6_addr addr) { put_u32(p+0, _I2(addr)); put_u32(p+4, _I3(addr)); } /* * Authentication-related functions */ uint babel_auth_write_challenge(struct babel_tlv *hdr, union babel_msg *msg, struct babel_write_state *state, uint max_len); int babel_auth_add_tlvs(struct babel_iface *ifa, struct babel_tlv *tlv, uint max_len); int babel_auth_sign(struct babel_iface *ifa, ip_addr dest); int babel_auth_check(struct babel_iface *ifa, ip_addr saddr, u16 sport, ip_addr daddr, u16 dport, struct babel_pkt_header *pkt, byte *start, uint len); /* * TLV read/write functions */ static int babel_read_ack_req(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static int babel_read_hello(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static int babel_read_ihu(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static int babel_read_router_id(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static int babel_read_next_hop(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static int babel_read_update(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static int babel_read_route_request(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static int babel_read_seqno_request(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static int babel_read_source_prefix(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static int babel_read_timestamp(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state); static uint babel_write_ack(struct babel_tlv *hdr, union babel_msg *msg, struct babel_write_state *state, uint max_len); static uint babel_write_hello(struct babel_tlv *hdr, union babel_msg *msg, struct babel_write_state *state, uint max_len); static uint babel_write_ihu(struct babel_tlv *hdr, union babel_msg *msg, struct babel_write_state *state, uint max_len); static uint babel_write_update(struct babel_tlv *hdr, union babel_msg *msg, struct babel_write_state *state, uint max_len); static uint babel_write_route_request(struct babel_tlv *hdr, union babel_msg *msg, struct babel_write_state *state, uint max_len); static uint babel_write_seqno_request(struct babel_tlv *hdr, union babel_msg *msg, struct babel_write_state *state, uint max_len); static int babel_write_source_prefix(struct babel_tlv *hdr, net_addr *net, uint max_len); static int babel_write_timestamp(struct babel_tlv *hdr, u32 tstamp, u32 tstamp_rcvd, uint max_len); static const struct babel_tlv_data tlv_data[BABEL_TLV_MAX] = { [BABEL_TLV_ACK_REQ] = { sizeof(struct babel_tlv_ack_req), babel_read_ack_req, NULL, babel_handle_ack_req }, [BABEL_TLV_ACK] = { sizeof(struct babel_tlv_ack), NULL, babel_write_ack, NULL }, [BABEL_TLV_HELLO] = { sizeof(struct babel_tlv_hello), babel_read_hello, babel_write_hello, babel_handle_hello }, [BABEL_TLV_IHU] = { sizeof(struct babel_tlv_ihu), babel_read_ihu, babel_write_ihu, babel_handle_ihu }, [BABEL_TLV_ROUTER_ID] = { sizeof(struct babel_tlv_router_id), babel_read_router_id, NULL, NULL }, [BABEL_TLV_NEXT_HOP] = { sizeof(struct babel_tlv_next_hop), babel_read_next_hop, NULL, NULL }, [BABEL_TLV_UPDATE] = { sizeof(struct babel_tlv_update), babel_read_update, babel_write_update, babel_handle_update }, [BABEL_TLV_ROUTE_REQUEST] = { sizeof(struct babel_tlv_route_request), babel_read_route_request, babel_write_route_request, babel_handle_route_request }, [BABEL_TLV_SEQNO_REQUEST] = { sizeof(struct babel_tlv_seqno_request), babel_read_seqno_request, babel_write_seqno_request, babel_handle_seqno_request }, [BABEL_TLV_CHALLENGE_REQUEST] = { sizeof(struct babel_tlv_challenge), NULL, babel_auth_write_challenge, NULL }, [BABEL_TLV_CHALLENGE_REPLY] = { sizeof(struct babel_tlv_challenge), NULL, babel_auth_write_challenge, NULL }, }; static const struct babel_tlv_data *get_packet_tlv_data(u8 type) { return type < sizeof(tlv_data) / sizeof(*tlv_data) ? &tlv_data[type] : NULL; } static const struct babel_tlv_data timestamp_tlv_data = { sizeof(struct babel_subtlv_timestamp), babel_read_timestamp, NULL, NULL }; static const struct babel_tlv_data source_prefix_tlv_data = { sizeof(struct babel_subtlv_source_prefix), babel_read_source_prefix, NULL, NULL }; static const struct babel_tlv_data *get_packet_subtlv_data(u8 type) { switch (type) { case BABEL_SUBTLV_TIMESTAMP: return ×tamp_tlv_data; case BABEL_SUBTLV_SOURCE_PREFIX: return &source_prefix_tlv_data; default: return NULL; } } static int babel_read_ack_req(struct babel_tlv *hdr, union babel_msg *m, struct babel_parse_state *state) { struct babel_tlv_ack_req *tlv = (void *) hdr; struct babel_msg_ack_req *msg = &m->ack_req; msg->type = BABEL_TLV_ACK_REQ; msg->nonce = get_u16(&tlv->nonce); msg->interval = get_time16(&tlv->interval); msg->sender = state->saddr; if (!msg->interval) return PARSE_ERROR; return PARSE_SUCCESS; } static uint babel_write_ack(struct babel_tlv *hdr, union babel_msg *m, struct babel_write_state *state UNUSED, uint max_len UNUSED) { struct babel_tlv_ack *tlv = (void *) hdr; struct babel_msg_ack *msg = &m->ack; TLV_HDR0(tlv, BABEL_TLV_ACK); put_u16(&tlv->nonce, msg->nonce); return sizeof(struct babel_tlv_ack); } static int babel_read_hello(struct babel_tlv *hdr, union babel_msg *m, struct babel_parse_state *state) { struct babel_tlv_hello *tlv = (void *) hdr; struct babel_msg_hello *msg = &m->hello; /* We currently don't support unicast Hello */ u16 flags = get_u16(&tlv->flags); if (flags & BABEL_HF_UNICAST) return PARSE_IGNORE; msg->type = BABEL_TLV_HELLO; msg->seqno = get_u16(&tlv->seqno); msg->interval = get_time16(&tlv->interval); msg->sender = state->saddr; return PARSE_SUCCESS; } static uint babel_write_hello(struct babel_tlv *hdr, union babel_msg *m, struct babel_write_state *state UNUSED, uint max_len) { struct babel_tlv_hello *tlv = (void *) hdr; struct babel_msg_hello *msg = &m->hello; uint len = sizeof(struct babel_tlv_hello); TLV_HDR0(tlv, BABEL_TLV_HELLO); put_u16(&tlv->seqno, msg->seqno); put_time16(&tlv->interval, msg->interval); if (msg->tstamp) { /* * There can be a substantial delay between when the babel_msg was created * and when it is serialised. We don't want this included in the RTT * measurement, so replace the timestamp with the current time to get as * close as possible to on-wire time for the packet. */ u32 tstamp = current_time_now() TO_US; int l = babel_write_timestamp(hdr, tstamp, 0, max_len); if (l < 0) return 0; len += l; } return len; } static int babel_read_ihu(struct babel_tlv *hdr, union babel_msg *m, struct babel_parse_state *state) { struct babel_tlv_ihu *tlv = (void *) hdr; struct babel_msg_ihu *msg = &m->ihu; msg->type = BABEL_TLV_IHU; msg->ae = tlv->ae; msg->rxcost = get_u16(&tlv->rxcost); msg->interval = get_time16(&tlv->interval); msg->addr = IPA_NONE; msg->sender = state->saddr; /* * We only actually read link-local IPs. In every other case, the addr field * will be 0 but validation will succeed. The handler takes care of these * cases. We handle them here anyway because we need the length for parsing * subtlvs. */ switch (msg->ae) { case BABEL_AE_WILDCARD: return PARSE_SUCCESS; case BABEL_AE_IP4: if (TLV_OPT_LENGTH(tlv) < 4) return PARSE_ERROR; state->current_tlv_endpos += 4; return PARSE_SUCCESS; case BABEL_AE_IP6: if (TLV_OPT_LENGTH(tlv) < 16) return PARSE_ERROR; state->current_tlv_endpos += 16; return PARSE_SUCCESS; case BABEL_AE_IP6_LL: if (TLV_OPT_LENGTH(tlv) < 8) return PARSE_ERROR; msg->addr = ipa_from_ip6(get_ip6_ll(&tlv->addr)); state->current_tlv_endpos += 8; return PARSE_SUCCESS; /* RFC 9229 2.4 - IHU TLV MUST NOT carry the AE 4 (IPv4-via-IPv6) */ case BABEL_AE_IP4_VIA_IP6: return PARSE_ERROR; default: return PARSE_IGNORE; } return PARSE_IGNORE; } static uint babel_write_ihu(struct babel_tlv *hdr, union babel_msg *m, struct babel_write_state *state UNUSED, uint max_len) { struct babel_tlv_ihu *tlv = (void *) hdr; struct babel_msg_ihu *msg = &m->ihu; uint len = sizeof(*tlv); if (ipa_is_link_local(msg->addr) && max_len < sizeof(struct babel_tlv_ihu) + 8) return 0; TLV_HDR0(tlv, BABEL_TLV_IHU); put_u16(&tlv->rxcost, msg->rxcost); put_time16(&tlv->interval, msg->interval); if (!ipa_is_link_local(msg->addr)) { tlv->ae = BABEL_AE_WILDCARD; goto out; } put_ip6_ll(&tlv->addr, msg->addr); tlv->ae = BABEL_AE_IP6_LL; hdr->length += 8; len += 8; out: if (msg->tstamp) { int l = babel_write_timestamp(hdr, msg->tstamp, msg->tstamp_rcvd, max_len); if (l < 0) return 0; len += l; } return len; } static int babel_read_router_id(struct babel_tlv *hdr, union babel_msg *m UNUSED, struct babel_parse_state *state) { struct babel_tlv_router_id *tlv = (void *) hdr; state->router_id = get_u64(&tlv->router_id); state->router_id_seen = 1; return PARSE_IGNORE; } /* This is called directly from babel_write_update() */ static uint babel_write_router_id(struct babel_tlv *hdr, u64 router_id, struct babel_write_state *state, uint max_len UNUSED) { struct babel_tlv_router_id *tlv = (void *) hdr; /* We still assume that first min_length bytes are available and zeroed */ TLV_HDR0(tlv, BABEL_TLV_ROUTER_ID); put_u64(&tlv->router_id, router_id); state->router_id = router_id; state->router_id_seen = 1; return sizeof(struct babel_tlv_router_id); } static int babel_read_next_hop(struct babel_tlv *hdr, union babel_msg *m UNUSED, struct babel_parse_state *state) { struct babel_tlv_next_hop *tlv = (void *) hdr; switch (tlv->ae) { case BABEL_AE_WILDCARD: return PARSE_ERROR; case BABEL_AE_IP4: if (TLV_OPT_LENGTH(tlv) < sizeof(ip4_addr)) return PARSE_ERROR; state->next_hop_ip4 = ipa_from_ip4(get_ip4(&tlv->addr)); state->current_tlv_endpos += sizeof(ip4_addr); return PARSE_IGNORE; case BABEL_AE_IP6: if (TLV_OPT_LENGTH(tlv) < sizeof(ip6_addr)) return PARSE_ERROR; state->next_hop_ip6 = ipa_from_ip6(get_ip6(&tlv->addr)); state->current_tlv_endpos += sizeof(ip6_addr); return PARSE_IGNORE; case BABEL_AE_IP6_LL: if (TLV_OPT_LENGTH(tlv) < 8) return PARSE_ERROR; state->next_hop_ip6 = ipa_from_ip6(get_ip6_ll(&tlv->addr)); state->current_tlv_endpos += 8; return PARSE_IGNORE; /* RFC 9229 2.4 - Next Hop TLV MUST NOT carry the AE 4 (IPv4-via-IPv6) */ case BABEL_AE_IP4_VIA_IP6: return PARSE_ERROR; default: return PARSE_IGNORE; } return PARSE_IGNORE; } /* This is called directly from babel_write_update() and returns -1 if a next hop should be written but there is not enough space. */ static int babel_write_next_hop(struct babel_tlv *hdr, ip_addr addr, struct babel_write_state *state, uint max_len) { struct babel_tlv_next_hop *tlv = (void *) hdr; if (ipa_zero(addr)) { /* Should not happen */ return 0; } else if (ipa_is_ip4(addr) && !ipa_equal(addr, state->next_hop_ip4)) { uint len = sizeof(struct babel_tlv_next_hop) + sizeof(ip4_addr); if (len > max_len) return -1; TLV_HDR(tlv, BABEL_TLV_NEXT_HOP, len); tlv->ae = BABEL_AE_IP4; put_ip4(&tlv->addr, ipa_to_ip4(addr)); state->next_hop_ip4 = addr; return len; } else if (ipa_is_ip6(addr) && !ipa_equal(addr, state->next_hop_ip6)) { uint len = sizeof(struct babel_tlv_next_hop) + sizeof(ip6_addr); if (len > max_len) return -1; TLV_HDR(tlv, BABEL_TLV_NEXT_HOP, len); tlv->ae = BABEL_AE_IP6; put_ip6(&tlv->addr, ipa_to_ip6(addr)); state->next_hop_ip6 = addr; return len; } return 0; } /* This is called directly from babel_read_update() to handle both BABEL_AE_IP4 and BABEL_AE_IP4_VIA_IP6 encodings */ static int babel_read_ip4_prefix(struct babel_tlv_update *tlv, struct babel_msg_update *msg, u8 *def_prefix, u8 *def_prefix_seen, ip_addr next_hop, int len) { if (tlv->plen > IP4_MAX_PREFIX_LENGTH) return PARSE_ERROR; /* Cannot omit data if there is no saved prefix */ if (tlv->omitted && !*def_prefix_seen) return PARSE_ERROR; /* Update must have next hop, unless it is retraction */ if (ipa_zero(next_hop) && msg->metric != BABEL_INFINITY) return PARSE_ERROR; /* Merge saved prefix and received prefix parts */ u8 buf[4] = {}; memcpy(buf, def_prefix, tlv->omitted); memcpy(buf + tlv->omitted, tlv->addr, len); ip4_addr prefix4 = get_ip4(buf); net_fill_ip4(&msg->net, prefix4, tlv->plen); if (tlv->flags & BABEL_UF_DEF_PREFIX) { put_ip4(def_prefix, prefix4); *def_prefix_seen = 1; } msg->next_hop = next_hop; return PARSE_SUCCESS; } static int babel_read_update(struct babel_tlv *hdr, union babel_msg *m, struct babel_parse_state *state) { struct babel_tlv_update *tlv = (void *) hdr; struct babel_msg_update *msg = &m->update; msg->type = BABEL_TLV_UPDATE; msg->interval = get_time16(&tlv->interval); msg->seqno = get_u16(&tlv->seqno); msg->metric = get_u16(&tlv->metric); /* Length of received prefix data without omitted part */ int len = BYTES(tlv->plen) - (int) tlv->omitted; if ((len < 0) || ((uint) len > TLV_OPT_LENGTH(tlv))) return PARSE_ERROR; int rc; switch (tlv->ae) { case BABEL_AE_WILDCARD: if (tlv->plen > 0) return PARSE_ERROR; if (msg->metric != 65535) return PARSE_ERROR; msg->wildcard = 1; break; case BABEL_AE_IP4: rc = babel_read_ip4_prefix(tlv, msg, state->def_ip4_prefix, &state->def_ip4_prefix_seen, state->next_hop_ip4, len); if (rc != PARSE_SUCCESS) return rc; break; case BABEL_AE_IP4_VIA_IP6: rc = babel_read_ip4_prefix(tlv, msg, state->def_ip4_via_ip6_prefix, &state->def_ip4_via_ip6_prefix_seen, state->next_hop_ip6, len); if (rc != PARSE_SUCCESS) return rc; break; case BABEL_AE_IP6: if (tlv->plen > IP6_MAX_PREFIX_LENGTH) return PARSE_ERROR; /* Cannot omit data if there is no saved prefix */ if (tlv->omitted && !state->def_ip6_prefix_seen) return PARSE_ERROR; /* Merge saved prefix and received prefix parts */ u8 buf[16] = {}; memcpy(buf, state->def_ip6_prefix, tlv->omitted); memcpy(buf + tlv->omitted, tlv->addr, len); ip6_addr prefix6 = get_ip6(buf); net_fill_ip6(&msg->net, prefix6, tlv->plen); if (state->sadr_enabled) net_make_ip6_sadr(&msg->net); if (tlv->flags & BABEL_UF_DEF_PREFIX) { put_ip6(state->def_ip6_prefix, prefix6); state->def_ip6_prefix_seen = 1; } if (tlv->flags & BABEL_UF_ROUTER_ID) { state->router_id = ((u64) _I2(prefix6)) << 32 | _I3(prefix6); state->router_id_seen = 1; } msg->next_hop = state->next_hop_ip6; break; case BABEL_AE_IP6_LL: /* ??? */ return PARSE_IGNORE; default: return PARSE_IGNORE; } /* Update must have Router ID, unless it is retraction */ if (!state->router_id_seen && (msg->metric != BABEL_INFINITY)) { DBG("Babel: No router ID seen before update\n"); return PARSE_ERROR; } msg->router_id = state->router_id; msg->sender = state->saddr; state->current_tlv_endpos += len; return PARSE_SUCCESS; } static uint babel_write_update(struct babel_tlv *hdr, union babel_msg *m, struct babel_write_state *state, uint max_len) { struct babel_msg_update *msg = &m->update; uint len0 = 0; /* * When needed, we write Router-ID TLV before Update TLV and return size of * both of them. There is enough space for the Router-ID TLV, because * sizeof(struct babel_tlv_router_id) == sizeof(struct babel_tlv_update). * * Router ID is not used for retractions, so do not use it in such case. */ if ((msg->metric < BABEL_INFINITY) && (!state->router_id_seen || (msg->router_id != state->router_id))) { len0 = babel_write_router_id(hdr, msg->router_id, state, max_len); hdr = NEXT_TLV(hdr); } /* * We also may add Next Hop TLV for regular updates. It may fail for not * enough space or it may be unnecessary as the next hop is the same as the * last one already announced. So we handle all three cases. */ if (msg->metric < BABEL_INFINITY) { int l = babel_write_next_hop(hdr, msg->next_hop, state, max_len - len0); if (l < 0) return 0; if (l) { len0 += l; hdr = NEXT_TLV(hdr); } } struct babel_tlv_update *tlv = (void *) hdr; uint len = sizeof(struct babel_tlv_update) + NET_SIZE(&msg->net); if (len0 + len > max_len) return 0; memset(tlv, 0, sizeof(struct babel_tlv_update)); TLV_HDR(tlv, BABEL_TLV_UPDATE, len); if (msg->wildcard) { tlv->ae = BABEL_AE_WILDCARD; tlv->plen = 0; } else if (msg->net.type == NET_IP4) { tlv->ae = ipa_is_ip4(msg->next_hop) ? BABEL_AE_IP4 : BABEL_AE_IP4_VIA_IP6; tlv->plen = net4_pxlen(&msg->net); put_ip4_px(tlv->addr, &msg->net); } else { tlv->ae = BABEL_AE_IP6; tlv->plen = net6_pxlen(&msg->net); /* Address compression - omit initial matching bytes */ u8 buf[16], omit; put_ip6(buf, net6_prefix(&msg->net)); omit = bytes_equal(buf, state->def_ip6_prefix, MIN(tlv->plen, state->def_ip6_pxlen) / 8); if (omit > 0) { memcpy(tlv->addr, buf + omit, NET_SIZE(&msg->net) - omit); tlv->omitted = omit; tlv->length -= omit; len -= omit; } else { put_ip6_px(tlv->addr, &msg->net); tlv->flags |= BABEL_UF_DEF_PREFIX; put_ip6(state->def_ip6_prefix, net6_prefix(&msg->net)); state->def_ip6_pxlen = tlv->plen; } } put_time16(&tlv->interval, msg->interval); put_u16(&tlv->seqno, msg->seqno); put_u16(&tlv->metric, msg->metric); if (msg->net.type == NET_IP6_SADR) { int l = babel_write_source_prefix(hdr, &msg->net, max_len - (len0 + len)); if (l < 0) return 0; len += l; } return len0 + len; } static int babel_read_route_request(struct babel_tlv *hdr, union babel_msg *m, struct babel_parse_state *state) { struct babel_tlv_route_request *tlv = (void *) hdr; struct babel_msg_route_request *msg = &m->route_request; msg->type = BABEL_TLV_ROUTE_REQUEST; switch (tlv->ae) { case BABEL_AE_WILDCARD: /* Wildcard requests must have plen 0 */ if (tlv->plen > 0) return PARSE_ERROR; msg->full = 1; return PARSE_SUCCESS; /* * RFC 9229 2.3 - When receiving requests, AE 1 (IPv4) and AE 4 * (IPv4-via-IPv6) MUST be treated in the same manner. */ case BABEL_AE_IP4: case BABEL_AE_IP4_VIA_IP6: if (tlv->plen > IP4_MAX_PREFIX_LENGTH) return PARSE_ERROR; if (TLV_OPT_LENGTH(tlv) < BYTES(tlv->plen)) return PARSE_ERROR; read_ip4_px(&msg->net, tlv->addr, tlv->plen); state->current_tlv_endpos += BYTES(tlv->plen); return PARSE_SUCCESS; case BABEL_AE_IP6: if (tlv->plen > IP6_MAX_PREFIX_LENGTH) return PARSE_ERROR; if (TLV_OPT_LENGTH(tlv) < BYTES(tlv->plen)) return PARSE_ERROR; read_ip6_px(&msg->net, tlv->addr, tlv->plen); state->current_tlv_endpos += BYTES(tlv->plen); if (state->sadr_enabled) net_make_ip6_sadr(&msg->net); return PARSE_SUCCESS; case BABEL_AE_IP6_LL: return PARSE_ERROR; default: return PARSE_IGNORE; } return PARSE_IGNORE; } static uint babel_write_route_request(struct babel_tlv *hdr, union babel_msg *m, struct babel_write_state *state UNUSED, uint max_len) { struct babel_tlv_route_request *tlv = (void *) hdr; struct babel_msg_route_request *msg = &m->route_request; uint len = sizeof(struct babel_tlv_route_request) + NET_SIZE(&msg->net); if (len > max_len) return 0; TLV_HDR(tlv, BABEL_TLV_ROUTE_REQUEST, len); if (msg->full) { tlv->ae = BABEL_AE_WILDCARD; tlv->plen = 0; } else if (msg->net.type == NET_IP4) { tlv->ae = BABEL_AE_IP4; tlv->plen = net4_pxlen(&msg->net); put_ip4_px(tlv->addr, &msg->net); } else { tlv->ae = BABEL_AE_IP6; tlv->plen = net6_pxlen(&msg->net); put_ip6_px(tlv->addr, &msg->net); } if (msg->net.type == NET_IP6_SADR) { int l = babel_write_source_prefix(hdr, &msg->net, max_len - len); if (l < 0) return 0; len += l; } return len; } static int babel_read_seqno_request(struct babel_tlv *hdr, union babel_msg *m, struct babel_parse_state *state) { struct babel_tlv_seqno_request *tlv = (void *) hdr; struct babel_msg_seqno_request *msg = &m->seqno_request; msg->type = BABEL_TLV_SEQNO_REQUEST; msg->seqno = get_u16(&tlv->seqno); msg->hop_count = tlv->hop_count; msg->router_id = get_u64(&tlv->router_id); msg->sender = state->saddr; if (tlv->hop_count == 0) return PARSE_ERROR; switch (tlv->ae) { case BABEL_AE_WILDCARD: return PARSE_ERROR; /* * RFC 9229 2.3 - When receiving requests, AE 1 (IPv4) and AE 4 * (IPv4-via-IPv6) MUST be treated in the same manner. */ case BABEL_AE_IP4: case BABEL_AE_IP4_VIA_IP6: if (tlv->plen > IP4_MAX_PREFIX_LENGTH) return PARSE_ERROR; if (TLV_OPT_LENGTH(tlv) < BYTES(tlv->plen)) return PARSE_ERROR; read_ip4_px(&msg->net, tlv->addr, tlv->plen); state->current_tlv_endpos += BYTES(tlv->plen); return PARSE_SUCCESS; case BABEL_AE_IP6: if (tlv->plen > IP6_MAX_PREFIX_LENGTH) return PARSE_ERROR; if (TLV_OPT_LENGTH(tlv) < BYTES(tlv->plen)) return PARSE_ERROR; read_ip6_px(&msg->net, tlv->addr, tlv->plen); state->current_tlv_endpos += BYTES(tlv->plen); if (state->sadr_enabled) net_make_ip6_sadr(&msg->net); return PARSE_SUCCESS; case BABEL_AE_IP6_LL: return PARSE_ERROR; default: return PARSE_IGNORE; } return PARSE_IGNORE; } static uint babel_write_seqno_request(struct babel_tlv *hdr, union babel_msg *m, struct babel_write_state *state UNUSED, uint max_len) { struct babel_tlv_seqno_request *tlv = (void *) hdr; struct babel_msg_seqno_request *msg = &m->seqno_request; uint len = sizeof(struct babel_tlv_seqno_request) + NET_SIZE(&msg->net); if (len > max_len) return 0; TLV_HDR(tlv, BABEL_TLV_SEQNO_REQUEST, len); if (msg->net.type == NET_IP4) { tlv->ae = BABEL_AE_IP4; tlv->plen = net4_pxlen(&msg->net); put_ip4_px(tlv->addr, &msg->net); } else { tlv->ae = BABEL_AE_IP6; tlv->plen = net6_pxlen(&msg->net); put_ip6_px(tlv->addr, &msg->net); } put_u16(&tlv->seqno, msg->seqno); tlv->hop_count = msg->hop_count; put_u64(&tlv->router_id, msg->router_id); if (msg->net.type == NET_IP6_SADR) { int l = babel_write_source_prefix(hdr, &msg->net, max_len - len); if (l < 0) return 0; len += l; } return len; } static int babel_read_source_prefix(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state UNUSED) { struct babel_subtlv_source_prefix *tlv = (void *) hdr; net_addr_ip6_sadr *net; /* * We would like to skip the sub-TLV if SADR is not enabled, but we do not * know AF of the enclosing TLV yet. We will do that later. */ /* Check internal consistency */ if ((tlv->length < 1) || (tlv->plen > IP6_MAX_PREFIX_LENGTH) || (tlv->length < (1 + BYTES(tlv->plen)))) return PARSE_ERROR; /* Plen MUST NOT be 0 */ if (tlv->plen == 0) return PARSE_ERROR; switch (msg->type) { case BABEL_TLV_UPDATE: /* Wildcard updates with source prefix MUST be silently ignored */ if (msg->update.wildcard) return PARSE_IGNORE; net = (void *) &msg->update.net; break; case BABEL_TLV_ROUTE_REQUEST: /* Wildcard requests with source addresses MUST be silently ignored */ if (msg->route_request.full) return PARSE_IGNORE; net = (void *) &msg->route_request.net; break; case BABEL_TLV_SEQNO_REQUEST: net = (void *) &msg->seqno_request.net; break; default: return PARSE_ERROR; } /* If SADR is active, the net has appropriate type */ if (net->type != NET_IP6_SADR) return PARSE_IGNORE; /* Duplicate Source Prefix sub-TLV; SHOULD ignore whole TLV */ if (net->src_pxlen > 0) return PARSE_IGNORE; net_addr_ip6 src; read_ip6_px((void *) &src, tlv->addr, tlv->plen); net->src_prefix = src.prefix; net->src_pxlen = src.pxlen; return PARSE_SUCCESS; } static int babel_write_source_prefix(struct babel_tlv *hdr, net_addr *n, uint max_len) { struct babel_subtlv_source_prefix *tlv = (void *) NEXT_TLV(hdr); net_addr_ip6_sadr *net = (void *) n; /* Do not use this sub-TLV for default prefix */ if (net->src_pxlen == 0) return 0; uint len = sizeof(*tlv) + BYTES(net->src_pxlen); if (len > max_len) return -1; TLV_HDR(tlv, BABEL_SUBTLV_SOURCE_PREFIX, len); hdr->length += len; net_addr_ip6 src = NET_ADDR_IP6(net->src_prefix, net->src_pxlen); tlv->plen = src.pxlen; put_ip6_px(tlv->addr, (void *) &src); return len; } static int babel_read_timestamp(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state) { struct babel_subtlv_timestamp *tlv = (void *) hdr; switch (msg->type) { case BABEL_TLV_HELLO: if (tlv->length < 4) return PARSE_ERROR; msg->hello.tstamp = get_u32(&tlv->tstamp); msg->hello.pkt_received = state->received_time; state->hello_tstamp_seen = 1; break; case BABEL_TLV_IHU: if (tlv->length < 8) return PARSE_ERROR; /* RTT calculation relies on a Hello always being present with an IHU */ if (!state->hello_tstamp_seen) break; msg->ihu.tstamp = get_u32(&tlv->tstamp); msg->ihu.tstamp_rcvd = get_u32(&tlv->tstamp_rcvd); msg->ihu.pkt_received = state->received_time; break; default: return PARSE_ERROR; } return PARSE_SUCCESS; } static int babel_write_timestamp(struct babel_tlv *hdr, u32 tstamp, u32 tstamp_rcvd, uint max_len) { struct babel_subtlv_timestamp *tlv = (void *) NEXT_TLV(hdr); uint len = sizeof(*tlv); if (hdr->type == BABEL_TLV_HELLO) len -= 4; if (len > max_len) return -1; TLV_HDR(tlv, BABEL_SUBTLV_TIMESTAMP, len); hdr->length += len; put_u32(&tlv->tstamp, tstamp); if (hdr->type == BABEL_TLV_IHU) put_u32(&tlv->tstamp_rcvd, tstamp_rcvd); return len; } static inline int babel_read_subtlvs(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state) { const struct babel_tlv_data *tlv_data; struct babel_proto *p = state->proto; struct babel_tlv *tlv; byte *end = (byte *) hdr + TLV_LENGTH(hdr); u8 frame_err = 0; int res; WALK_TLVS((void *)hdr + state->current_tlv_endpos, end, tlv, frame_err, state->saddr, state->ifa->ifname) { if (tlv->type == BABEL_SUBTLV_PADN) continue; if (!state->get_subtlv_data || !(tlv_data = state->get_subtlv_data(tlv->type)) || !tlv_data->read_tlv) { /* Unknown mandatory subtlv; PARSE_IGNORE ignores the whole TLV */ if (tlv->type >= 128) return PARSE_IGNORE; continue; } res = tlv_data->read_tlv(tlv, msg, state); if (res != PARSE_SUCCESS) return res; } WALK_TLVS_END; return frame_err ? PARSE_ERROR : PARSE_SUCCESS; } static int babel_read_tlv(struct babel_tlv *hdr, union babel_msg *msg, struct babel_parse_state *state) { const struct babel_tlv_data *tlv_data; if ((hdr->type <= BABEL_TLV_PADN) || (hdr->type >= BABEL_TLV_MAX)) return PARSE_IGNORE; tlv_data = state->get_tlv_data(hdr->type); if (!tlv_data || !tlv_data->read_tlv) return PARSE_IGNORE; if (TLV_LENGTH(hdr) < tlv_data->min_length) return PARSE_ERROR; state->current_tlv_endpos = tlv_data->min_length; int res = tlv_data->read_tlv(hdr, msg, state); if (res != PARSE_SUCCESS) return res; return babel_read_subtlvs(hdr, msg, state); } static uint babel_write_tlv(struct babel_tlv *hdr, union babel_msg *msg, struct babel_write_state *state, uint max_len) { if ((msg->type <= BABEL_TLV_PADN) || (msg->type >= BABEL_TLV_MAX) || !tlv_data[msg->type].write_tlv) return 0; if (tlv_data[msg->type].min_length > max_len) return 0; memset(hdr, 0, tlv_data[msg->type].min_length); return tlv_data[msg->type].write_tlv(hdr, msg, state, max_len); } /* * Packet RX/TX functions */ static int babel_send_to(struct babel_iface *ifa, ip_addr dest) { sock *sk = ifa->sk; struct babel_pkt_header *hdr = (void *) sk->tbuf; int len = get_u16(&hdr->length) + sizeof(struct babel_pkt_header); len += babel_auth_sign(ifa, dest); DBG("Babel: Sending %d bytes to %I\n", len, dest); return sk_send_to(sk, len, dest, 0); } /** * babel_write_queue - Write a TLV queue to a transmission buffer * @ifa: Interface holding the transmission buffer * @queue: TLV queue to write (containing internal-format TLVs) * * This function writes a packet to the interface transmission buffer with as * many TLVs from the &queue as will fit in the buffer. It returns the number of * bytes written (NOT counting the packet header). The function is called by * babel_send_queue() and babel_send_unicast() to construct packets for * transmission, and uses per-TLV helper functions to convert the * internal-format TLVs to their wire representations. * * The TLVs in the queue are freed after they are written to the buffer. */ static uint babel_write_queue(struct babel_iface *ifa, list *queue) { struct babel_write_state state = { .next_hop_ip6 = ifa->addr }; if (EMPTY_LIST(*queue)) return 0; byte *pos = ifa->sk->tbuf; byte *end = pos + ifa->tx_length; struct babel_pkt_header *pkt = (void *) pos; pkt->magic = BABEL_MAGIC; pkt->version = BABEL_VERSION; pkt->length = 0; pos += sizeof(struct babel_pkt_header); struct babel_msg_node *msg; WALK_LIST_FIRST(msg, *queue) { if (pos >= end) break; int len = babel_write_tlv((struct babel_tlv *) pos, &msg->msg, &state, end - pos); if (!len) break; pos += len; rem_node(NODE msg); sl_free(msg); } pos += babel_auth_add_tlvs(ifa, (struct babel_tlv *) pos, end - pos); uint plen = pos - (byte *) pkt; put_u16(&pkt->length, plen - sizeof(struct babel_pkt_header)); return plen; } void babel_send_queue(void *arg) { struct babel_iface *ifa = arg; while ((babel_write_queue(ifa, &ifa->msg_queue) > 0) && (babel_send_to(ifa, IP6_BABEL_ROUTERS) > 0)); } static inline void babel_kick_queue(struct babel_iface *ifa) { /* * Only schedule send event if there is not already data in the socket buffer. * Otherwise we may overwrite the data already in the buffer. */ if ((ifa->sk->tpos == ifa->sk->tbuf) && !ev_active(ifa->send_event)) ev_send_loop(ifa->proto->p.loop, ifa->send_event); } /** * babel_send_unicast - send a single TLV via unicast to a destination * @msg: TLV to send * @ifa: Interface to send via * @dest: Destination of the TLV * * This function is used to send a single TLV via unicast to a designated * receiver. This is used for replying to certain incoming requests, and for * sending unicast requests to refresh routes before they expire. */ void babel_send_unicast(union babel_msg *msg, struct babel_iface *ifa, ip_addr dest) { struct babel_proto *p = ifa->proto; struct babel_msg_node *msgn = sl_alloc(p->msg_slab); list queue; *msgn = (struct babel_msg_node) { .msg = *msg }; init_list(&queue); add_tail(&queue, NODE msgn); babel_write_queue(ifa, &queue); babel_send_to(ifa, dest); /* We could overwrite waiting packet here, we may have to kick TX queue */ if (!EMPTY_LIST(ifa->msg_queue)) babel_kick_queue(ifa); } /** * babel_enqueue - enqueue a TLV for transmission on an interface * @msg: TLV to enqueue (in internal TLV format) * @ifa: Interface to enqueue to * * This function is called to enqueue a TLV for subsequent transmission on an * interface. The transmission event is triggered whenever a TLV is enqueued; * this ensures that TLVs will be transmitted in a timely manner, but that TLVs * which are enqueued in rapid succession can be transmitted together in one * packet. */ void babel_enqueue(union babel_msg *msg, struct babel_iface *ifa) { struct babel_proto *p = ifa->proto; struct babel_msg_node *msgn = sl_alloc(p->msg_slab); *msgn = (struct babel_msg_node) { .msg = *msg }; add_tail(&ifa->msg_queue, NODE msgn); babel_kick_queue(ifa); } /** * babel_process_packet - process incoming data packet * @ifa: Interface packet was received on * @pkt: Pointer to the packet data * @len: Length of received packet * @saddr: Address of packet sender * @sport: Packet source port * @daddr: Destination address of packet * @dport: Packet destination port * * This function is the main processing hook of incoming Babel packets. It * checks that the packet header is well-formed, then processes the TLVs * contained in the packet. This is done in two passes: First all TLVs are * parsed into the internal TLV format. If a TLV parser fails, processing of the * rest of the packet is aborted. * * After the parsing step, the TLV handlers are called for each parsed TLV in * order. */ static void babel_process_packet(struct babel_iface *ifa, struct babel_pkt_header *pkt, int len, ip_addr saddr, u16 sport, ip_addr daddr, u16 dport) { u8 frame_err UNUSED = 0; struct babel_proto *p = ifa->proto; struct babel_tlv *tlv; struct babel_msg_node *msg; list msgs; int res; int plen = sizeof(struct babel_pkt_header) + get_u16(&pkt->length); byte *end = (byte *)pkt + plen; struct babel_parse_state state = { .get_tlv_data = &get_packet_tlv_data, .get_subtlv_data = &get_packet_subtlv_data, .proto = p, .ifa = ifa, .saddr = saddr, .next_hop_ip6 = saddr, .sadr_enabled = babel_sadr_enabled(p), /* * The core updates current_time() after returning from poll(), so this is * actually the time the packet was received, even though there may have * been a bit of delay before we got to process it */ .received_time = current_time(), }; if ((pkt->magic != BABEL_MAGIC) || (pkt->version != BABEL_VERSION)) { TRACE(D_PACKETS, "Strange packet from %I via %s - magic %d version %d", saddr, ifa->iface->name, pkt->magic, pkt->version); return; } if (plen > len) { LOG_PKT("Bad packet from %I via %s - %s (%u)", saddr, ifa->iface->name, "length mismatch", plen); return; } TRACE(D_PACKETS, "Packet received from %I via %s", saddr, ifa->iface->name); if (!babel_auth_check(ifa, saddr, sport, daddr, dport, pkt, end, len - plen)) return; init_list(&msgs); /* First pass through the packet TLV by TLV, parsing each into internal data structures. */ WALK_TLVS(FIRST_TLV(pkt), end, tlv, frame_err, saddr, ifa->iface->name) { msg = sl_allocz(p->msg_slab); res = babel_read_tlv(tlv, &msg->msg, &state); if (res == PARSE_SUCCESS) { add_tail(&msgs, NODE msg); } else if (res == PARSE_IGNORE) { DBG("Babel: Ignoring TLV of type %d\n", tlv->type); sl_free(msg); } else /* PARSE_ERROR */ { LOG_PKT("Bad TLV from %I via %s type %d pos %d - parse error", saddr, ifa->iface->name, tlv->type, (int) ((byte *)tlv - (byte *)pkt)); sl_free(msg); break; } } WALK_TLVS_END; /* Parsing done, handle all parsed TLVs, regardless of any errors */ WALK_LIST_FIRST(msg, msgs) { if (tlv_data[msg->msg.type].handle_tlv) tlv_data[msg->msg.type].handle_tlv(&msg->msg, ifa); rem_node(NODE msg); sl_free(msg); } } static void babel_err_hook(sock *sk, int err) { struct babel_iface *ifa = sk->data; struct babel_proto *p = ifa->proto; log(L_ERR "%s: Socket error on %s: %M", p->p.name, ifa->iface->name, err); /* FIXME: Drop queued TLVs here? */ } static void babel_tx_hook(sock *sk) { struct babel_iface *ifa = sk->data; DBG("Babel: TX hook called (iface %s, src %I, dst %I)\n", sk->iface->name, sk->saddr, sk->daddr); babel_send_queue(ifa); } static int babel_rx_hook(sock *sk, uint len) { struct babel_iface *ifa = sk->data; struct babel_proto *p = ifa->proto; const char *err_dsc = NULL; uint err_val = 0; if (sk->lifindex != ifa->iface->index) return 1; DBG("Babel: RX hook called (iface %s, src %I, dst %I)\n", sk->iface->name, sk->faddr, sk->laddr); /* Silently ignore my own packets */ if (ipa_equal(sk->faddr, sk->saddr)) return 1; if (!ipa_is_link_local(sk->faddr)) DROP1("wrong src address"); if (sk->fport != ifa->cf->port) DROP("wrong src port", sk->fport); if (len < sizeof(struct babel_pkt_header)) DROP("too short", len); if (sk->flags & SKF_TRUNCATED) DROP("truncated", len); babel_process_packet(ifa, (struct babel_pkt_header *) sk->rbuf, len, sk->faddr, sk->fport, sk->laddr, sk->dport); return 1; drop: LOG_PKT("Bad packet from %I via %s - %s (%u)", sk->faddr, sk->iface->name, err_dsc, err_val); return 1; } int babel_open_socket(struct babel_iface *ifa) { struct babel_proto *p = ifa->proto; sock *sk; sk = sk_new(ifa->pool); sk->type = SK_UDP; sk->sport = ifa->cf->port; sk->dport = ifa->cf->port; sk->iface = ifa->iface; sk->saddr = ifa->addr; sk->vrf = p->p.vrf; sk->rx_hook = babel_rx_hook; sk->tx_hook = babel_tx_hook; sk->err_hook = babel_err_hook; sk->data = ifa; sk->tos = ifa->cf->tx_tos; sk->priority = ifa->cf->tx_priority; sk->ttl = 1; sk->flags = SKF_LADDR_RX; if (sk_open(sk, p->p.loop) < 0) goto err; if (sk_setup_multicast(sk) < 0) goto err; if (sk_join_group(sk, IP6_BABEL_ROUTERS) < 0) goto err; ifa->sk = sk; return 1; err: sk_log_error(sk, p->p.name); sk_close(sk); return 0; } /* Authentication checks */ static int babel_read_pc(struct babel_tlv *hdr, union babel_msg *m UNUSED, struct babel_parse_state *state) { struct babel_tlv_pc *tlv = (void *) hdr; /* RFC 8967 4.3 (3) - If multiple PCs are found, only the first one is used */ if (state->auth.pc_seen) return PARSE_IGNORE; uint index_len = TLV_OPT_LENGTH(tlv); if (index_len > BABEL_AUTH_INDEX_LEN) return PARSE_IGNORE; state->auth.pc = get_u32(&tlv->pc); state->auth.pc_seen = 1; state->auth.index_len = index_len; state->auth.index = tlv->index; state->auth.unicast = state->is_unicast; state->current_tlv_endpos += index_len; return PARSE_SUCCESS; } static const struct babel_tlv_data pc_tlv_data = { .min_length = sizeof(struct babel_tlv_pc), .read_tlv = &babel_read_pc }; static int babel_read_challenge_req(struct babel_tlv *hdr, union babel_msg *m UNUSED, struct babel_parse_state *state) { struct babel_tlv_challenge *tlv = (void *) hdr; if (!state->is_unicast) return PARSE_IGNORE; uint nonce_len = TLV_OPT_LENGTH(tlv); if (nonce_len > BABEL_AUTH_MAX_NONCE_LEN) return PARSE_IGNORE; state->auth.challenge_len = nonce_len; bmemcpy(state->auth.challenge, tlv->nonce, nonce_len); state->auth.challenge_seen = 1; state->current_tlv_endpos += nonce_len; return PARSE_SUCCESS; } static const struct babel_tlv_data challenge_req_tlv_data = { .min_length = sizeof(struct babel_tlv_challenge), .read_tlv = &babel_read_challenge_req, }; static int babel_read_challenge_reply(struct babel_tlv *hdr, union babel_msg *m UNUSED, struct babel_parse_state *state) { struct babel_tlv_challenge *tlv = (void *) hdr; if (state->auth.challenge_reply_seen) return PARSE_IGNORE; uint nonce_len = TLV_OPT_LENGTH(tlv); if (nonce_len != BABEL_AUTH_NONCE_LEN) return PARSE_IGNORE; memcpy(state->auth.challenge_reply, tlv->nonce, BABEL_AUTH_NONCE_LEN); state->auth.challenge_reply_seen = 1; state->current_tlv_endpos += nonce_len; return PARSE_SUCCESS; } static const struct babel_tlv_data challenge_reply_tlv_data = { .min_length = sizeof(struct babel_tlv_challenge), .read_tlv = &babel_read_challenge_reply, }; static const struct babel_tlv_data * get_auth_tlv_data(u8 type) { switch (type) { case BABEL_TLV_PC: return &pc_tlv_data; case BABEL_TLV_CHALLENGE_REQUEST: return &challenge_req_tlv_data; case BABEL_TLV_CHALLENGE_REPLY: return &challenge_reply_tlv_data; default: return NULL; } } uint babel_auth_write_challenge(struct babel_tlv *hdr, union babel_msg *m, struct babel_write_state *state UNUSED, uint max_len) { struct babel_tlv_challenge *tlv = (void *) hdr; struct babel_msg_challenge *msg = &m->challenge; uint len = sizeof(struct babel_tlv_challenge) + msg->nonce_len; if (len > max_len) return 0; TLV_HDR(tlv, msg->type, len); bmemcpy(tlv->nonce, msg->nonce, msg->nonce_len); return len; } static void babel_mac_fill(struct password_item *pass, struct babel_mac_pseudoheader *phdr, byte *pkt, uint pkt_len, byte *mac) { struct mac_context ctx; mac_init(&ctx, pass->alg, pass->password, pass->length); mac_update(&ctx, (byte *)phdr, sizeof(*phdr)); mac_update(&ctx, (byte *)pkt, pkt_len); memcpy(mac, mac_final(&ctx), mac_get_length(&ctx)); mac_cleanup(&ctx); } static void babel_mac_build_phdr(struct babel_mac_pseudoheader *phdr, ip_addr saddr, u16 sport, ip_addr daddr, u16 dport) { memset(phdr, 0, sizeof(*phdr)); put_ip6(phdr->src_addr, saddr); put_u16(&phdr->src_port, sport); put_ip6(phdr->dst_addr, daddr); put_u16(&phdr->dst_port, dport); DBG("MAC pseudo-header: %I %d %I %d\n", saddr, sport, daddr, dport); } static int babel_auth_check_mac(struct babel_iface *ifa, byte *pkt, byte *trailer, uint trailer_len, ip_addr saddr, u16 sport, ip_addr daddr, u16 dport) { struct babel_proto *p = ifa->proto; uint pkt_len = (uint)(trailer - pkt); byte *end = trailer + trailer_len; btime now_ = current_real_time(); if (trailer_len < sizeof(struct babel_tlv)) { LOG_PKT_AUTH("Authentication failed for %I on %s - no MAC signature", saddr, ifa->ifname); return 0; } struct babel_mac_pseudoheader phdr; babel_mac_build_phdr(&phdr, saddr, sport, daddr, dport); struct password_item *pass; WALK_LIST(pass, *ifa->cf->passwords) { byte mac[MAX_HASH_SIZE]; uint mac_len = mac_type_length(pass->alg); uint frame_err = 0; if (pass->accfrom > now_ || pass->accto < now_) continue; babel_mac_fill(pass, &phdr, pkt, pkt_len, mac); struct babel_tlv *tlv0; WALK_TLVS((void *)trailer, end, tlv0, frame_err, saddr, ifa->ifname) { struct babel_tlv_mac *tlv = (void *)tlv0; if (tlv->type != BABEL_TLV_MAC) continue; if ((TLV_OPT_LENGTH(tlv) == mac_len) && !memcmp(tlv->mac, mac, mac_len)) return 1; DBG("MAC mismatch key id %d pos %d len %d/%d\n", pass->id, (int) ((byte *)tlv - (byte *)pkt), mac_len, tlv->length); } WALK_TLVS_END; if (frame_err) return 0; } LOG_PKT_AUTH("Authentication failed for %I on %s - no matching key", saddr, ifa->ifname); return 0; } /** * babel_auth_check - Check authentication for a packet * @ifa: Interface holding the transmission buffer * @saddr: Source address the packet was received from * @sport: Source port the packet was received from * @daddr: Destination address the packet was sent to * @dport: Destination port the packet was sent to * @pkt: Pointer to start of the packet data * @trailer: Pointer to the packet trailer * @trailer_len: Length of the packet trailer * * This function performs any necessary authentication checks on a packet and * returns 0 if the packet should be accepted (either because it has been * successfully authenticated or because authentication is disabled or * configured in permissive mode), or 1 if the packet should be dropped without * further processing. */ int babel_auth_check(struct babel_iface *ifa, ip_addr saddr, u16 sport, ip_addr daddr, u16 dport, struct babel_pkt_header *pkt, byte *trailer, uint trailer_len) { uint frame_err UNUSED = 0; struct babel_proto *p = ifa->proto; struct babel_tlv *tlv; struct babel_parse_state state = { .get_tlv_data = &get_auth_tlv_data, .proto = p, .ifa = ifa, .saddr = saddr, .is_unicast = !(ipa_classify(daddr) & IADDR_MULTICAST), .auth = { .sender = saddr, }, }; if (ifa->cf->auth_type == BABEL_AUTH_NONE) return 1; TRACE(D_PACKETS, "Checking packet authentication signature"); if (!babel_auth_check_mac(ifa, (byte *)pkt, trailer, trailer_len, saddr, sport, daddr, dport)) goto fail; /* MAC verified; parse packet to check packet counter and challenge */ WALK_TLVS(FIRST_TLV(pkt), trailer, tlv, frame_err, saddr, ifa->ifname) { union babel_msg msg; enum parse_result res; res = babel_read_tlv(tlv, &msg, &state); if (res == PARSE_ERROR) { LOG_PKT("Bad TLV from %I via %s type %d pos %d - parse error", saddr, ifa->ifname, tlv->type, (int) ((byte *)tlv - (byte *)pkt)); goto fail; } } WALK_TLVS_END; if (!babel_auth_check_pc(ifa, &state.auth)) goto fail; TRACE(D_PACKETS, "Packet from %I via %s authenticated successfully", saddr, ifa->ifname); return 1; fail: TRACE(D_PACKETS, "Packet from %I via %s failed authentication%s", saddr, ifa->ifname, ifa->cf->auth_permissive ? " but accepted in permissive mode" : ""); return ifa->cf->auth_permissive; } /** * babel_auth_add_tlvs - Add authentication-related TLVs to a packet * @ifa: Interface holding the transmission buffer * @tlv: Pointer to the place where any new TLVs should be added * @max_len: Maximum length available for adding new TLVs * * This function adds any new TLVs required by the authentication mode to a * packet before it is shipped out. For MAC authentication, this is the packet * counter TLV that must be included in every packet. */ int babel_auth_add_tlvs(struct babel_iface *ifa, struct babel_tlv *hdr, uint max_len) { struct babel_proto *p = ifa->proto; struct babel_tlv_pc *tlv; uint len; if (ifa->cf->auth_type == BABEL_AUTH_NONE) return 0; tlv = (void *) hdr; len = sizeof(struct babel_tlv_pc) + BABEL_AUTH_INDEX_LEN; max_len += ifa->auth_tx_overhead; if (len > max_len) { LOG_WARN("Insufficient space to add MAC seqno TLV on iface %s: %d < %d", ifa->ifname, max_len, len); return 0; } TLV_HDR(tlv, BABEL_TLV_PC, len); put_u32(&tlv->pc, ifa->auth_pc++); memcpy(tlv->index, ifa->auth_index, BABEL_AUTH_INDEX_LEN); /* Reset index on overflow to 0 */ if (!ifa->auth_pc) babel_auth_reset_index(ifa); return len; } /** * babel_auth_sign - Sign an outgoing packet before transmission * @ifa: Interface holding the transmission buffer * @dest: Destination address of the packet * * This function adds authentication signature(s) to the packet trailer for each * of the configured authentication keys on the interface. */ int babel_auth_sign(struct babel_iface *ifa, ip_addr dest) { struct babel_proto *p = ifa->proto; sock *sk = ifa->sk; if (ifa->cf->auth_type == BABEL_AUTH_NONE) return 0; struct babel_pkt_header *hdr = (void *) sk->tbuf; int len = get_u16(&hdr->length) + sizeof(struct babel_pkt_header); byte *pkt = (byte *) hdr; byte *pos = pkt + len; byte *end = pkt + ifa->tx_length + ifa->auth_tx_overhead; btime now_ = current_real_time(); struct babel_mac_pseudoheader phdr; babel_mac_build_phdr(&phdr, sk->saddr, sk->sport, dest, sk->dport); struct password_item *pass; WALK_LIST(pass, *ifa->cf->passwords) { struct babel_tlv_mac *tlv = (void *) pos; uint tlv_len = sizeof(struct babel_tlv_mac) + mac_type_length(pass->alg); if (pass->genfrom > now_ || pass->gento < now_) continue; if (pos + tlv_len > end) { LOG_WARN("Insufficient space for MAC signatures on iface %s dst %I (%d/%d)", ifa->ifname, dest, tlv_len, (int) (end-pos)); break; } TLV_HDR(tlv, BABEL_TLV_MAC, tlv_len); babel_mac_fill(pass, &phdr, pkt, len, tlv->mac); pos += tlv_len; } DBG("Added MAC signatures (%d bytes) on ifa %s for dest %I\n", pos - (pkt + len), ifa->ifname, dest); return pos - (pkt + len); } /** * babel_auth_set_tx_overhead - Set interface TX overhead for authentication * @ifa: Interface to configure * * This function sets the TX overhead for an interface based on its * authentication configuration. */ void babel_auth_set_tx_overhead(struct babel_iface *ifa) { if (ifa->cf->auth_type == BABEL_AUTH_NONE) { ifa->auth_tx_overhead = 0; return; } ifa->auth_tx_overhead = (sizeof(struct babel_tlv_pc) + BABEL_AUTH_INDEX_LEN + sizeof(struct babel_tlv_mac) * ifa->cf->mac_num_keys + ifa->cf->mac_total_len); ifa->tx_length -= ifa->auth_tx_overhead; }