Add option 'netlink rx buffer' to specify netlink socket receive buffer
size. Uses SO_RCVBUFFORCE, so it can override rmem_max limit.
Thanks to Trisha Biswas and Michal for the original patches.
Add strict checking for netlink KRT dumps to avoid PMTU cache records
from FNHE table dump along with KRT.
Linux Kernel added FNHE table dump to the netlink API in patch:
8d3b68cd37.1561131177.git.sbrivio@redhat.com/
Therefore, since Linux 5.3 these route cache entries are dumped together
with regular routes during periodic KRT scans, which in some cases may be
huge amount of useless data. This can be avoided by using strict checking
for netlink dumps:
https://lore.kernel.org/netdev/20181008031644.15989-1-dsahern@kernel.org/
The patch mitigates the risk of receiving unknown and potentially large
number of FNHE records that would block BIRD I/O in each sync. There is a
known issue caused by the GRE tunnels on Linux that seems to be creating
one FNHE record for each destination IP address that is routed through
the tunnel, even when the PMTU equals to GRE interface MTU.
Thanks to Tomas Hlavacek for the original patch.
Kernel uses cloned routes to keep route cache entries, but reports them
together with regular routes. They were skipped implicitly as they
do not have rtm_protocol filled. Add explicit check for cloned flag
and skip such routes explicitly.
Also, improve debug logs of skipped routes.
Add option to socket interface for nonlocal binding, i.e. binding to an
IP address that is not present on interfaces. This behaviour is enabled
when SKF_FREEBIND socket flag is set. For Linux systems, it is
implemented by IP_FREEBIND socket flag.
Minor changes done by commiter.
Currently, BIRD ignores dead routes to consider them absent. But it also
ignores its own routes and thus it can not correctly manage such routes
in some cases. This patch makes an exception for routes with proto bird
when ignoring dead routes, so they can be properly updated or removed.
Thanks to Alexander Zubkov for the original patch.
The BSD kernel does not support the onlink flag and BIRD does not use
direct routes for next hop validation, instead depends on interface
address ranges. We would like to handle PtMP cases with only host
addresses configured, like:
ifconfig wg0 192.168.0.10/32
route add 192.168.0.4 -iface wg0
route add 192.168.0.8 -iface wg0
To accept BIRD routes with onlink next-hop, like:
route 192.168.42.0/24 via 192.168.0.4%wg0 onlink
BIRD would dismiss the route when receiving from the kernel, as the
next-hop 192.168.0.4 is not part of any interface subnet and onlink
flag is not kept by the BSD kernel.
The commit fixes this by assuming that for routes received from the
kernel, any next-hop is onlink on ifaces with only host addresses.
Thanks to Stefan Haller for the original patch.
The resource pool system is highly hierarchical and keeping spare pages
in pools leads to unnecessarily complex memory management.
Loops have a flat hiearchy, at least for now, and it is therefore much
easier to keep care of pages, especially in cases of excessive virtual memory
fragmentation.
This basically means that:
* there are some more levels of indirection and asynchronicity, mostly
in cleanup procedures, requiring correct lock ordering
* all the internal table operations (prune, next hop update) are done
without blocking the other parts of BIRD
* the protocols may get their own loops very soon
This commit prevents use-after-free of routes belonging to protocols
which have been already destroyed, delaying also all the protocols'
shutdown until all of their routes have been finally propagated through
all the pipes down to the appropriate exports.
The use-after-free was somehow hypothetic yet theoretically possible in
rare conditions, when one BGP protocol authors a lot of routes and the
user deletes that protocol by reconfiguring in the same time as next hop
update is requested, causing rte_better() to be called on a
not-yet-pruned network prefix while the owner protocol has been already
freed.
In parallel execution environments, this would happen an inter-thread
use-after-free, causing possible heisenbugs or other nasty problems.
There is a simple universal IO loop, taking care of events, timers and
sockets. Primarily, one instance of a protocol should use exactly one IO
loop to do all its work, as is now done in BFD.
Contrary to previous versions, the loop is now launched and cleaned by
the nest/proto.c code, allowing for a protocol to just request its own
loop by setting the loop's lock order in config higher than the_bird.
It is not supported nor checked if any protocol changed the requested
lock order in reconfigure. No protocol should do it at all.
In previous versions, every thread used its own time structures,
effectively leading to different time in every thread and strange
logging messages.
The time processing code now uses global atomic variables to keep
current time available for fast concurrent reading and safe updates.
* internal tables are now more standalone, having their own import and
export hooks
* route refresh/reload uses stale counter instead of stale flag,
allowing to drop walking the table at the beginning
* route modify (by BGP LLGR) is now done by a special refeed hook,
reimporting the modified routes directly without filters
Channels have now included rt_import_req and rt_export_req to hook into
the table instead of just one list node. This will (in future) allow for:
* channel import and export bound to different tables
* more efficient pipe code (dropping most of the channel code)
* conversion of 'show route' to a special kind of export
* temporary static routes from CLI
The import / export states are also updated to the new algorithms.
Routes are now allocated only when they are just to be inserted to the
table. Updating a route needs a locally allocated route structure.
Ownership of the attributes is also now not transfered from protocols to
tables and vice versa but just borrowed which should be easier to handle
in a multithreaded environment.