BIRD keeps a previous (old) configuration for the purpose of undo. The
existing code frees it after a new configuration is successfully parsed
during reconfiguration. That causes memory usage spikes as there are
temporarily three configurations (old, current, and new). The patch
changes it to free the old one before parsing the new one (as user
already requested a new config). The disadvantage is that undo is
not available after failed reconfiguration.
Memory unmapping causes slow address space fragmentation, leading in
extreme cases to failing to allocate pages at all. Removing this problem
by keeping all the pages allocated to us, yet calling madvise() to let
kernel dispose of them.
This adds a little complexity and overhead as we have to keep the
pointers to the free pages, therefore to hold e.g. 1 GB of 4K pages with
8B pointers, we have to store 2 MB of data.
This is a reimplementation of commit 0f2be469f8
by Alexander Zubkov. In the master branch, changes in commit eb937358
broke setting of channel preference for alien routes learned during
scan. The preference was set only for async routes.
The original solution is extended here to accomodate for v3 specifics.
Changes in commit eb937358 broke setting of channel preference for alien
routes learned during scan. The preference was set only for async routes.
Move common attribute processing part of functions krt_learn_async() and
krt_learn_async() to a separate function to have only one place for such
changes.
Remove compile-time sysdep option CONFIG_ALL_TABLES_AT_ONCE, replace it
with runtime ability to run either separate table scans or shared scan.
On Linux, use separate table scans by default when the netlink socket
option NETLINK_GET_STRICT_CHK is available, but retreat to shared scan
when it fails.
Running separate table scans has advantages where some routing tables are
managed independently, e.g. when multiple routing daemons are running on
the same machine, as kernel routing table modification performance is
significantly reduced when the table is modified while it is being
scanned.
Thanks Daniel Gröber for the original patch and Toke Høiland-Jørgensen
for suggestions.
The learnt routes are now pushed all into the connected table, not only
the best one. This shouldn't do any damage in well managed setups, yet
it should be noted that it is a change of behavior.
If anybody misses a feature which they implemented by misusing this
internal learn table, let us know, we'll consider implementing it in a
better way.
Passing protocol to preexport was in fact a historical relic from the
old times when channels weren't a thing. Refactoring that to match
current extensibility needs.
There were quite a lot of conflicts in flowspec validation code which
ultimately led to some code being a bit rewritten, not only adapted from
this or that branch, yet it is still in a limit of a merge.
For now, all route attributes are stored as eattrs in ea_list. This
should make route manipulation easier and it also allows for a layered
approach of route attributes where updates from filters will be stored
as an overlay over the previous version.
As there is either a nexthop or another destination specification
(or othing in case of ROAs and Flowspec), it may be merged together.
This code is somehow quirky and should be replaced in future by better
implementation of nexthop.
Also flowspec validation result has its own attribute now as it doesn't
have anything to do with route nexthop.
This doesn't do anything more than to put the whole structure inside
adata. The overall performance is certainly going downhill; we'll
optimize this later.
Anyway, this is one of the latest items inside rta and in several
commits we may drop rta completely and move to eattrs-only routes.
Some tokens are both keywords and symbols. For now, we allow only
specific keywords to be redefined; in future, more of the keywords may
be added to this category.
The redefinable keywords must be specified in any .Y file as follows:
toksym: THE_KEYWORD ;
See proto/bgp/config.Y for an example.
Also dropped a lot of unused terminals.
Changes in internal API:
* Every route attribute must be defined as struct ea_class somewhere.
* Registration of route attributes known at startup must be done by
ea_register_init() from protocol build functions.
* Every attribute has now its symbol registered in a global symbol table
defined as SYM_ATTRIBUTE
* All attribute ID's are dynamically allocated.
* Attribute value custom formatting hook is defined in the ea_class.
* Attribute names are the same for display and filters, always prefixed
by protocol name.
Also added some unit testing code for filters with route attributes.
This commit removes the EAF_TYPE_* namespace completely and also for
route attributes, filter-based types T_* are used. This simplifies
fetching and setting route attributes from filters.
Also, there is now union bval which serves as an universal value holder
instead of private unions held separately by eattr and filter code.
When BIRD was munmapping too many pages, it sometimes aborted, saying
that munmap failed with "Not enough memory" as the address space was
getting more and more fragmented.
There is a workaround in place, simply keeping that page for future use,
yet it has never been compiled in because I somehow forgot to include
errno.h. And because I also thought that somebody may have ENOMEM not
defined (why?!), there was a check which quietly omitted that
workaround.
Anyway, ENOMEM is POSIX. It's an utter nonsense to check for its
existence. If it doesn't exist, something is broken.
Add option to socket interface for nonlocal binding, i.e. binding to an
IP address that is not present on interfaces. This behaviour is enabled
when SKF_FREEBIND socket flag is set. For Linux systems, it is
implemented by IP_FREEBIND socket flag.
Minor changes done by commiter.
This commit prevents use-after-free of routes belonging to protocols
which have been already destroyed, delaying also all the protocols'
shutdown until all of their routes have been finally propagated through
all the pipes down to the appropriate exports.
The use-after-free was somehow hypothetic yet theoretically possible in
rare conditions, when one BGP protocol authors a lot of routes and the
user deletes that protocol by reconfiguring in the same time as next hop
update is requested, causing rte_better() to be called on a
not-yet-pruned network prefix while the owner protocol has been already
freed.
In parallel execution environments, this would happen an inter-thread
use-after-free, causing possible heisenbugs or other nasty problems.
There is a simple universal IO loop, taking care of events, timers and
sockets. Primarily, one instance of a protocol should use exactly one IO
loop to do all its work, as is now done in BFD.
Contrary to previous versions, the loop is now launched and cleaned by
the nest/proto.c code, allowing for a protocol to just request its own
loop by setting the loop's lock order in config higher than the_bird.
It is not supported nor checked if any protocol changed the requested
lock order in reconfigure. No protocol should do it at all.
In previous versions, every thread used its own time structures,
effectively leading to different time in every thread and strange
logging messages.
The time processing code now uses global atomic variables to keep
current time available for fast concurrent reading and safe updates.
* internal tables are now more standalone, having their own import and
export hooks
* route refresh/reload uses stale counter instead of stale flag,
allowing to drop walking the table at the beginning
* route modify (by BGP LLGR) is now done by a special refeed hook,
reimporting the modified routes directly without filters