There are now 3 different pools with specific lifetime. All of these are
available since protocol start, anyway they get freed in different
moments.
First, pool_up gets freed immediately after announcing PS_STOP, to e.g.
stop all timers and events regularly updating the routing table when the
imports are already flushing.
Then, pool_inloop gets freed just before the protocol loop is finally
stopped, after all channels, imports and exports and other hooks are
cleaned up.
And finally, the pool itself is freed the last. Unless you explicitly
need the early free, use this pool.
Old configs do not define MPLS domains and may use a static protocol
to define static MPLS routes.
When MPLS channel is the only channel of static protocol, handle it
as a main channel. Also, define implicit MPLS domain if needed and
none is defined.
When a MPLS channel is reloaded, it should reload all regular MPLS-aware
channels. This causes re-evaluation of routes in FEC map and possibly
reannouncement of MPLS routes.
Instead of just using route attributes, static routes with
static MPLS labels can be defined just by e.g.:
route 10.1.1.0/24 mpls 100 via 10.1.2.1 mpls 200;
The L3VPN protocol implements RFC 4364 BGP/MPLS VPNs using MPLS backbone.
It works similarly to pipe. It connects IP table (one per VRF) with (global)
VPN table. Routes passed from VPN table to IP table are stripped of RD and
filtered by import targets, routes passed in the other direction are extended
with RD, MPLS labels and export targets in extended communities. A separate
MPLS channel is used to announce MPLS routes for the labels.
When MPLS is active, received routes on MPLS-aware SAFIs (ipvX-mpls,
vpnX-mpls) are automatically labeled according to active label policy and
corresponding MPLS routes are automatically generated. Also routes sent
on MPLS-aware SAFIs announce local labels when it should be done.
When MPLS is active, static IP/VPN routes are automatically labeled
according to active label policy and corresponding MPLS routes are
automatically generated.
If the protocol supports route refresh on export, we keep the stop-start
method of route refeed. This applies for BGP with ERR or with export
table on, for OSPF, Babel, RIP or Pipe.
For BGP without ERR or for future selective ROA reloads, we're adding an
auxiliary export request, doing the refeed while the main export request
is running, somehow resembling the original method of BIRD 2 refeed.
There is also a refeed request queue to keep track of different refeed
requests.
In general, private_id is sparse and protocols may want to map some
internal values directly into it. For example, L3VPN needs to
map VPN route discriminators to private_id.
OTOH, u32 is enough for global_id, as these identifiers are dense.
Add a new protocol offering route aggregation.
User can specify list of route attributes in the configuration file and
run route aggregation on the export side of the pipe protocol. Routes are
sorted and for every group of equivalent routes new route is created and
exported to the routing table. It is also possible to specify filter
which will run for every route before aggregation.
Furthermore, it will be possible to set attributes of new routes
according to attributes of the aggregated routes.
This is a work in progress.
Original work by Igor Putovny, subsequent cleanups and finalization by
Maria Matejka.
For now, there are 4 phases: Necessary (device), Connector (kernel, pipe), Generator (static, rpki) and Regular.
Started and reconfigured are from Necessary to Regular, shutdown backwards.
This way, kernel can flush routes before actually being shutdown.
According to RFC 5882, system should not interpret the local or remote
session state transition to AdminDown as failure. We followed that for
the local session state but not for the remote session state (which
just triggered a transition of the local state to Down). The patch
fixes that.
We do not properly generate AdminDown on our side, so the patch is
relevant just for interoperability with other systems.
Thanks to Sunnat Samadov for the bugreport.
Most syntactic constructs in BIRD configuration (e.g. protocol options)
are defined as keywords, which are distinct from symbols (user-defined
names for protocols, variables, ...). That may cause backwards
compatibility issue when a new feature is added, as it may collide with
existing user names.
We can allow keywords to be shadowed by symbols in almost all cases to
avoid this issue.
This replaces the previous mechanism, where shadowable symbols have to be
explictly added to kw_syms.
Nonterminal bytestring allows to provide expressions to be evaluated in
places where BYTETEXT is used now: passwords, radv custom option.
Based on the patch from Alexander Zubkov <green@qrator.net>, thanks!
- Rename BYTESTRING lexem to BYTETEXT, not to collide with 'bytestring' type name
- Add bytestring type with id T_BYTESTRING (0x2c)
- Add from_hex() filter function to create bytestring from hex string
- Add filter test cases for bytestring type
Minor changes by committer.
Despite not having defined 'master interface', VRF interfaces should be
treated as being inside respective VRFs. They behave as a loopback for
respective VRFs. Treating the VRF interface as inside the VRF allows
e.g. OSPF to pick up IP addresses defined on the VRF interface.
For this, we also need to tell apart VRF interfaces and regular interfaces.
Extend Netlink code to parse interface type and mark VRF interfaces with
IF_VRF flag.
Based on the patch from Erin Shepherd, thanks!