This is part of the multithreading journey. The parser and lexer were
using loads of global variables and all of these are now packed into
struct cf_context and others.
Note that the config API has changed:
* cfg_alloc[zu]?(size) is now cf_alloc[zu]?(ctx, size)
* cf_error(msg, ...) is now cf_error(ctx, msg, ...)
* config_parse() and cli_parse() are now called differently
* there is a brand new CF_CTX section in *.Y files which participates
in struct cf_context construction
This is a fundamental change of an original (1999) concept of route
processing inside BIRD. During import/export, there was a temporary
ea_list created which was to be used instead of the another one inside
the route itself.
This led to some confusion, quirks, and strange filter code that handled
extended route attributes. Dropping it now.
The protocol interface has changed in an uniform way -- the
`struct ea_list *attrs` argument has been removed from store_tmp_attrs(),
import_control(), rt_notify() and get_route_info().
The bgpmask literals can include expressions. This is OK but they have
to be interpreted as soon as the code is run, not in the time the code
is used as value.
This led to strange behavior like rewriting bgpmasks when they shan't
be rewritten:
function mask_generator(int as)
{
return [= * as * =];
}
function another()
bgpmask m1;
bgpmask m2;
{
m1 = mask_generator(10);
m2 = mask_generator(20);
if (m1 == m2) {
print("strange"); # this would happen
}
}
Moreover, sending this to CLI would cause stack overflow and knock down the
whole BIRD, as soon as there is at least one route to execute the given
filter on.
show route filter bgpmask mmm; bgppath ppp; { ppp = +empty+; mmm = [= (ppp ~ mmm) =]; print(mmm); accept; }
The magic match operator (~) inside the bgpmask literal would try to
resolve mmm, which points to the same bgpmask so it would resolve
itself, call the magic match operator and vice versa.
After this patch, the bgpmask literal will get resolved as soon as it's
assigned to mmm and it also will return a type error as bool is not
convertible to ASN in BIRD.
This instruction was removed in the commit linked below
and never used ever again. Rest in peace.
commit 84c7e1943f
Author: Pavel Machek <pavel@ucw.cz>
Date: Tue Mar 2 19:49:28 1999 +0000
The two-letter instructions were quite messy but they could be easily
read from memory dumps. Now GDB (since 2012) supports pretty printing
enum values and GCC checks the switch construction for missing enum
values so we are converting the nice two-byte values to enums.
Anyway, the enum still keeps the old two-byte values to be able to read
the instruction codes even without GDB from plain memory dump.
A filter should log messages only if executed explicitly (e.g., during
route export or route import). When a filter is executed for technical
reasons (e.g., to establish whether a route was exported before), it
should run silently.
The patch implements Default Router Preferences and More-Specific Routes
(RFC 4191) for RAdv protocol, allowing to announce router preference and
more specific routes in router advertisements. Routes can be exported to
RAdv like to regular routing protocols.
Some cleanups, bugfixes and other changes done by Ondrej Zajicek.
- Unit Testing Framework (BirdTest)
- Integration of BirdTest into the BIRD build system
- Tests for several BIRD modules
Based on squashed Pavel Tvrdik's int-test branch, updated for
current int-new branch.
Add support for large communities (draft-ietf-idr-large-community),
96bit alternative to RFC 1997 communities.
Thanks to Matt Griswold for the original patch.
The patch adds suport for specifying route attributes together with
static routes, e.g.:
route 10.1.1.0/24 via 10.0.0.1 { krt_advmss = 1200; ospf_metric1 = 100; };
Implemented eval command can be used to evaluate expressions.
The patch also documents echo command and allows to use log classes
instead of integer as a mask for echo.
- ROA tables, which are used as a basic part for RPKI.
- Commands for examining and modifying ROA tables.
- Filter operators based on ROA tables consistent with RFC 6483.
Changes the time complexity of the algorithm from O(n^2) to O(n*log(n)).
This speeds up loading of huge DEC-IX config from 128 s to 15 s. It also
makes the code significantly simpler.
Prefix sets were broken beyond any repair and have to be reimplemented.
They are reimplemented using a trie with bitmasks in nodes.
There is also change in the interpretation of minus prefix pattern,
but the old interpretation was already inconsistent with
the documentation and broken.
There is also some bugfixes in filter code related to set variables.