In previous versions, every thread used its own time structures,
effectively leading to different time in every thread and strange
logging messages.
The time processing code now uses global atomic variables to keep
current time available for fast concurrent reading and safe updates.
In some specific configurations, it was possible to send BIRD into an
infinite loop of recursive next hop resolution. This was caused by route
priority inversion.
To prevent priority inversions affecting other next hops, we simply
refuse to resolve any next hop if the best route for the matching prefix
is recursive or any other route with the same preference is recursive.
Next hop resolution doesn't change route priority, therefore it is
perfectly OK to resolve BGP next hops e.g. by an OSPF route, yet if the
same (or covering) prefix is also announced by iBGP, by retraction of
the OSPF route we would get a possible priority inversion.
* internal tables are now more standalone, having their own import and
export hooks
* route refresh/reload uses stale counter instead of stale flag,
allowing to drop walking the table at the beginning
* route modify (by BGP LLGR) is now done by a special refeed hook,
reimporting the modified routes directly without filters
Channels have now included rt_import_req and rt_export_req to hook into
the table instead of just one list node. This will (in future) allow for:
* channel import and export bound to different tables
* more efficient pipe code (dropping most of the channel code)
* conversion of 'show route' to a special kind of export
* temporary static routes from CLI
The import / export states are also updated to the new algorithms.
Routes are now allocated only when they are just to be inserted to the
table. Updating a route needs a locally allocated route structure.
Ownership of the attributes is also now not transfered from protocols to
tables and vice versa but just borrowed which should be easier to handle
in a multithreaded environment.
We can also quite simply allocate bigger blocks. Anyway, we need these
blocks to be aligned to their size which needs one mmap() two times
bigger and then two munmap()s returning the unaligned parts.
The user can specify -B <N> on startup when <N> is the exponent of 2,
setting the block size to 2^N. On most systems, N is 12, anyway if you
know that your configuration is going to eat gigabytes of RAM, you are
almost forced to raise your block size as you may easily get into memory
fragmentation issues or you have to raise your maximum mapping count,
e.g. "sysctl vm.max_map_count=(number)".