The new MRT protocol is responsible for periodic RIB table dumps in the
MRT format (RFC 6396). Also the existing code for BGP4MP MRT dumps is
refactored and splitted between BGP to MRT protocols, will be more
integrated into MRT in the future.
Example:
protocol mrt {
table "*";
filename "%N_%F_%T.mrt";
period 60;
}
It is partially based on the old MRT code from Pavel Tvrdik.
BSD systems cannot use SO_DONTROUTE, because it does not work properly
with multicast packets (perhaps it tries to find iface based on multicast
group address). But we can use MSG_DONTROUTE sendmsg() flag for unicast
packets. Works on FreeBSD, is ignored on OpenBSD and is broken on NetBSD
(i guess due to integrated routing table and ARP table).
Add basic VRF (virtual routing and forwarding) support. Protocols can be
associated with VRFs, such protocols will be restricted to interfaces
assigned to the VRF (as reported by Linux kernel) and will use sockets
bound to the VRF. E.g., different multihop BGP instances can use diffent
kernel routing tables to handle BGP TCP connections.
The VRF support is preliminary, currently there are several limitations:
- Recent Linux kernels (4.11) do not handle correctly sockets bound
to interaces that are part of VRF, so most protocols other than multihop
BGP do not work. This will be fixed by future kernel versions.
- Neighbor cache ignores VRFs. Breaks config with the same prefix on
local interfaces in different VRFs. Not much problem as single hop
protocols do not work anyways.
- Olock code ignores VRFs. Breaks config with multiple BGP peers with the
same IP address in different VRFs.
- Incoming BGP connections are not dispatched according to VRFs.
Breaks config with multiple BGP peers with the same IP address in
different VRFs. Perhaps we would need some kernel API to read VRF of
incoming connection? Or probably use multiple listening sockets in
int-new branch.
- We should handle master VRF interface up/down events and perhaps
disable associated protocols when VRF goes down. Or at least disable
associated interfaces.
- Also we should check if the master iface is really VRF iface and
not some other kind of master iface.
- BFD session request dispatch should be aware of VRFs.
- Perhaps kernel protocol should read default kernel table ID from VRF
iface so it is not necessary to configure it.
- Perhaps we should have per-VRF default table.
Prefix and bucket tables are initialized when entering established state
but not explicitly freed when leaving it (that is handled by protocol
restart). With graceful restart, BGP may enter and leave established
state multiple times without hard protocol restart causing memory leak.
BIRD passed string from configuration to openlog(), which kept it
internally. After reconfiguration the old string was freed, therefore
openlog had invalid copy.
Thanks to Chris Caputo for the original patch.
This patch implements the IPv6 subset of the Babel routing protocol.
Based on the patch from Toke Hoiland-Jorgensen, with some heavy
modifications and bugfixes.
Thanks to Toke Hoiland-Jorgensen for the original patch.
Add code for manipulation with TCP-MD5 keys in the IPsec SA/SP database
at FreeBSD systems. Now, BGP MD5 authentication (RFC 2385) keys are
handled automatically on both Linux and FreeBSD.
Based on patches from Pavel Tvrdik.
In BIRD, RX has lower priority than TX with the exception of RX from
control socket. The patch replaces heuristic based on socket type with
explicit mark and uses it for both control socket and BGP session waiting
to be established.
This should avoid an issue when during heavy load, outgoing connection
could connect (TX event), send open, but then failed to receive OPEN /
establish in time, not sending notifications between and therefore
got hold timer expired error from the neighbor immediately after it
finally established the connection.
The old linked list implementation used some wild typecasts and required
GCC option -fno-strict-aliasing to work properly. This patch fixes that.
However, we still keep the option due to other potential problems.
(Commited by Ondrej Santiago Zajicek)
The new RIP implementation fixes plenty of old bugs and also adds support
for many new features: ECMP support, link state support, BFD support,
configurable split horizon and more. Most options are now per-interface.
New LSA checksumming code separates generic Fletcher-16 and OSPF-specific
code and avoids back and forth endianity conversions, making it much more
readable and also several times faster.