On large configurations, too many threads would spawn with one thread
per loop. Therefore, threads may now run multiple loops at once. The
thread count is configurable and may be changed during run. All threads
are spawned on startup.
This change helps with memory bloating. BIRD filters need large
temporary memory blocks to store their stack and also memory management
keeps its hot page storage per-thread.
Known bugs:
* Thread autobalancing is not yet implemented.
* Low latency loops are executed together with standard loops.
If no channel is flushing, table prune doesn't walk over routes in nets
and also doesn't walk over importing channel lists. This helps to
alleviate the memory caching burdens a lot.
Some CLI actions, notably "show route", are run by queuing an event
somewhere else. If the user closes the socket, in case such an action is
being executed, the CLI must free the socket immediately from the error
hook but the pool must remain until the asynchronous event finishes and
cleans everything up.
Memory unmapping causes slow address space fragmentation, leading in
extreme cases to failing to allocate pages at all. Removing this problem
by keeping all the pages allocated to us, yet calling madvise() to let
kernel dispose of them.
This adds a little complexity and overhead as we have to keep the
pointers to the free pages, therefore to hold e.g. 1 GB of 4K pages with
8B pointers, we have to store 2 MB of data.
Define scope for anonymous filters, and also explicitly distinguish block
scopes and function/filter scopes instead of using anonymous / named
distinction.
Anonymous filters forgot to push scope, so variables for them were in
fact defined in the top scope and therefore they shared a frame. This got
broken after rework of variables, which assumed that there is a named
scope for every function/filter.
While onlink flag is meaningful only with explicit next hops, it can be
defined also on direct routes. Parse it also in this case to avoid
periodic updates of the same route.
Thanks to Marcin Saklak for the bugreport.
Add BGP channel option 'next hop prefer global' that modifies BGP
recursive next hop resolution to use global next hop IPv6 address instead
of link-local next hop IPv6 address for immediate next hop of received
routes.
It is useful to distinguish whehter channel config returned from
channel_config_get() was allocated new, or existing from template.
Caller may want to initialize new ones.
In principle, the channel list is a list of parent struct proto and can
contain general structures of type struct channel, That is useful e.g.
for adding MPLS channels to BGP.