To avoid needs for keeping local temporary references for attributes,
now one can use ea_lookup_tmp() to ensure that the attributes are
valid and stored until the task ends. After that, the attributes are
automatically unref'd and also deallocated if needed.
This commit makes the route chains in the tables atomic. This allows not
only standard exports but also feeds and bulk exports to be processed
without ever locking the table.
Design note: the overall data structures are quite brittle. We're using
RCU read-locks to keep track about readers, and we're indicating ongoing
work on the data structures by prepending a REF_OBSOLETE sentinel node
to make every reader go waiting.
All the operations are intended to stay inside nest/rt-table.c and it
may be even best to further refactor the code to hide the routing table
internal structure inside there. Nobody shall definitely write any
routines manipulating live routes in tables from outside.
If cork occurred after some incoming data had been already processed,
BGP incorrectly processed them again after uncorking because it forgot
to store the actual socket state.
Now storing the socket state (done at the end of bgp_rx()) and
therefore the bug is fixed.
BGP route attributes have flags (Optional, Transitive) that are validated
on decode and set to valid value on export. But if such attribute is
modified by filter or set internally by BGP during import, then its flags
would be zero in local tables. That usually does not matter, as they are
not used locally and they were fixed on export, but invalid flags leaked
in BMP and MRT dumps.
Keep route attribute flags set to valid values even when set by filters
or modified by BGP.
We can distinguish BGP sessions if at least one side uses a different IP
address. Extend olock mechanism to handle local IP as a part of key, with
optional wildcard, so BGP sessions could local IP in the olock and not
block themselves.
Increase max length of notification data in error logs from 16 to 128.
There is already enough space in the buffer.
Thanks to Marco d'Itri for the suggestion.
Implement BGP Send hold timer according to draft-ietf-idr-bgp-sendholdtimer.
The Send hold timer drops the session if the neighbor is sending keepalives,
but does not receive our messages, causing the TCP connection to stall.
Some BGP capabilities change the BGP behavior in a significant way, so if
the configuration depends on it, it is better to not establish BGP
session when the capability is not available.
Add several BGP option to require individual BGP capabilities during
session negotiation.
Some [redacted] (yes, myself) had a really bad idea
to rename nest/route.h to nest/rt.h while refactoring
some data structures out of it.
This led to unnecessarily complex problems with
merging updates from v2. Reverting this change
to make my life a bit easier.
At least it needed only one find-sed command:
find -name '*.[chlY]' -type f -exec sed -i 's#nest/rt.h#nest/route.h#' '{}' +
This merge was particularly difficult. I finally resorted to delete the
symbol scope active flag altogether and replace its usage by other
means.
Also I had to update custom route attribute registration to fit
both the scope updates in v2 and the data model in v3.
Conflicts:
conf/cf-lex.l
conf/conf.h
conf/confbase.Y
conf/gen_keywords.m4
conf/gen_parser.m4
filter/config.Y
nest/config.Y
proto/bgp/config.Y
proto/static/config.Y
Keywords and attributes are split to separate namespaces, to avoid
collisions between regular keyword use and attribute overlay.
There are now 3 different pools with specific lifetime. All of these are
available since protocol start, anyway they get freed in different
moments.
First, pool_up gets freed immediately after announcing PS_STOP, to e.g.
stop all timers and events regularly updating the routing table when the
imports are already flushing.
Then, pool_inloop gets freed just before the protocol loop is finally
stopped, after all channels, imports and exports and other hooks are
cleaned up.
And finally, the pool itself is freed the last. Unless you explicitly
need the early free, use this pool.
When a MPLS channel is reloaded, it should reload all regular MPLS-aware
channels. This causes re-evaluation of routes in FEC map and possibly
reannouncement of MPLS routes.
When MPLS is active, received routes on MPLS-aware SAFIs (ipvX-mpls,
vpnX-mpls) are automatically labeled according to active label policy and
corresponding MPLS routes are automatically generated. Also routes sent
on MPLS-aware SAFIs announce local labels when it should be done.
If the protocol supports route refresh on export, we keep the stop-start
method of route refeed. This applies for BGP with ERR or with export
table on, for OSPF, Babel, RIP or Pipe.
For BGP without ERR or for future selective ROA reloads, we're adding an
auxiliary export request, doing the refeed while the main export request
is running, somehow resembling the original method of BIRD 2 refeed.
There is also a refeed request queue to keep track of different refeed
requests.
In general, private_id is sparse and protocols may want to map some
internal values directly into it. For example, L3VPN needs to
map VPN route discriminators to private_id.
OTOH, u32 is enough for global_id, as these identifiers are dense.
Most syntactic constructs in BIRD configuration (e.g. protocol options)
are defined as keywords, which are distinct from symbols (user-defined
names for protocols, variables, ...). That may cause backwards
compatibility issue when a new feature is added, as it may collide with
existing user names.
We can allow keywords to be shadowed by symbols in almost all cases to
avoid this issue.
This replaces the previous mechanism, where shadowable symbols have to be
explictly added to kw_syms.
Despite not having defined 'master interface', VRF interfaces should be
treated as being inside respective VRFs. They behave as a loopback for
respective VRFs. Treating the VRF interface as inside the VRF allows
e.g. OSPF to pick up IP addresses defined on the VRF interface.
For this, we also need to tell apart VRF interfaces and regular interfaces.
Extend Netlink code to parse interface type and mark VRF interfaces with
IF_VRF flag.
Based on the patch from Erin Shepherd, thanks!
Move all bmp_peer_down() calls to one place and make it synchronous with
BGP session down, ensuring that BMP receives peer_down before route
withdraws from flushing.
Also refactor bmp_peer_down_() message generating code.
- Manage BMP state through bmp_peer, bmp_stream, bmp_table structures
- Use channels and rt_notify() hook for route announcements
- Add support for post-policy monitoring
- Send End-of-RIB even when there is no routes
- Remove rte_update_in_notify() hook from import tables
- Update import tables to support channels
- Add bmp_hack (no feed / no flush) flag to channels
Add internal BMP functions with plicit bmp_proto *p as first argument,
which allows using TRACE() macro. Keep list of BMP instances and call
internal functions. Old BMP functions are wrappers that call internal
functions for all enabled BMP instances.
Extract End-of-RIB mark into separate function.
Based on patch from Michal Zagorski <mzagorsk@akamai.com>. Thanks!
Fix issue with missing AF cap (e.g. IPv4 unicast when no capabilities
are announced).
Add Linpool save/restore action similar to bgp_create_update().
Based on patch from Michal Zagorski <mzagorsk@akamai.com> co-authored
with Pawel Maslanka <pmaslank@akamai.com>. Thanks!
When an OPEN message without capability options was parsed, the remote
role field was not initialized with the proper (non-zero) default value,
so it was interpreted as if 'provider' was announced.
Thanks to Mikhail Grishin for the bugreport.
The BMP protocol needs OPEN messages of established BGP sessions to
construct appropriate Peer Up messages. Instead of saving them internally
we use OPEN messages stored in BGP instances. This allows BMP instances
to be restarted or enabled later.
Because of this change, we can simplify BMP data structures. No need to
keep track of BGP sessions when we are not started. We have to iterate
over all (established) BGP sessions when the BMP session is established.
This is just a scaffolding now, but some kind of iteration would be
necessary anyway.
Also, the commit cleans up handling of msg/msg_length arguments to be
body/body_length consistently in both rx/tx and peer_up/peer_down calls.
For whatever reason, parser allocated a symbol for every parsed keyword
in each scope. That wasted time and memory. The effect is worsened with
recent changes allowing local scopes, so keywords often promote soft
scopes (with no symbols) to real scopes.
Do not allocate a symbol for a keyword. Take care of keywords that could
be promoted to symbols (kw_sym) and do it explicitly.
Memory allocation is a fragile part of BIRD and we need checking that
everybody is using the resource pools in an appropriate way. To assure
this, all the resource pools are associated with locking domains and
every resource manipulation is thoroughly checked whether the
appropriate locking domain is locked.
With transitive resource manipulation like resource dumping or mass free
operations, domains are locked and unlocked on the go, thus we require
pool domains to have higher order than their parent to allow for this
transitive operations.
Adding pool locking revealed some cases of insecure memory manipulation
and this commit fixes that as well.
Initial implementation of a basic subset of the BMP (BGP Monitoring
Protocol, RFC 7854) from Akamai team. Submitted for further review
and improvement.