Add BGP channel option 'next hop prefer global' that modifies BGP
recursive next hop resolution to use global next hop IPv6 address instead
of link-local next hop IPv6 address for immediate next hop of received
routes.
In principle, the channel list is a list of parent struct proto and can
contain general structures of type struct channel, That is useful e.g.
for adding MPLS channels to BGP.
- When next hop is reset to local IP, we should remove BGP label stack,
as it is related to original next hop
- BGP next hop or immediate next hop from one VRF should not be passed
to another VRF, as they are different IP namespaces
Had to fix route source locking inside BGP export table as we need to
keep the route sources properly allocated until even last BGP pending
update is sent out, therefore the export table printout is accurate.
There were more conflicts that I'd like to see, most notably in route
export. If a bisect identifies this commit with something related, it
may be simply true that this commit introduces that bug. Let's hope it
doesn't happen.
The invalid routes were filtered out before they could ever get
exported, yet some of the routines need them available, e.g. for
display or import reload.
Now the invalid routes are properly exported and dropped in channel
export routines instead.
For BGP LLGR purposes, there was an API allowing a protocol to directly
modify their stale routes in table before flushing them. This API was
called by the table prune routine which violates the future locking
requirements.
Instead of this, BGP now requests a special route export and reimports
these routes into the table, allowing for asynchronous execution without
locking the table on export.
Until now, we were marking routes as REF_STALE and REF_DISCARD to
cleanup old routes after route refresh. This needed a synchronous route
table walk at both beginning and the end of route refresh routine,
marking the routes by the flags.
We avoid these walks by using a stale counter. Every route contains:
u8 stale_cycle;
Every import hook contains:
u8 stale_set;
u8 stale_valid;
u8 stale_pruned;
u8 stale_pruning;
In base_state, stale_set == stale_valid == stale_pruned == stale_pruning
and all routes' stale_cycle also have the same value.
The route refresh looks like follows:
+ ----------- + --------- + ----------- + ------------- + ------------ +
| | stale_set | stale_valid | stale_pruning | stale_pruned |
| Base | x | x | x | x |
| Begin | x+1 | x | x | x |
... now routes are being inserted with stale_cycle == (x+1)
| End | x+1 | x+1 | x | x |
... now table pruning routine is scheduled
| Prune begin | x+1 | x+1 | x+1 | x |
... now routes with stale_cycle not between stale_set and stale_valid
are deleted
| Prune end | x+1 | x+1 | x+1 | x+1 |
+ ----------- + --------- + ----------- + ------------- + ------------ +
The pruning routine is asynchronous and may have high latency in
high-load environments. Therefore, multiple route refresh requests may
happen before the pruning routine starts, leading to this situation:
| Prune begin | x+k | x+k | x -> x+k | x |
... or even
| Prune begin | x+k+1 | x+k | x -> x+k | x |
... if the prune event starts while another route refresh is running.
In such a case, the pruning routine still deletes routes not fitting
between stale_set and and stale_valid, effectively pruning the remnants
of all unpruned route refreshes from before:
| Prune end | x+k | x+k | x+k | x+k |
In extremely rare cases, there may happen too many route refreshes
before any route prune routine finishes. If the difference between
stale_valid and stale_pruned becomes more than 128 when requesting for
another route refresh, the routine walks the table synchronously and
resets all the stale values to a base state, while logging a warning.
Implement BGP roles as described in RFC 9234. It is a mechanism for
route leak prevention and automatic route filtering based on common BGP
topology relationships. It defines role capability (controlled by 'local
role' option) and OTC route attribute, which is used for automatic route
filtering and leak detection.
Minor changes done by commiter.
Until now, if export table was enabled, Nest was storing exactly the
route before rt_notify() was called on it. This was quite sloppy and
spooky and it also wasn't reflecting the changes BGP does before
sending. And as BGP is storing the routes to be sent anyway, we are
simply keeping the already-sent routes in there to better rule out
unneeded reexports.
Some of the route attributes (IGP metric, preference) make no sense in
BGP, therefore these will be probably replaced by something sensible.
Also the nexthop shown in the short output is the BGP nexthop.
Passing protocol to preexport was in fact a historical relic from the
old times when channels weren't a thing. Refactoring that to match
current extensibility needs.
There were quite a lot of conflicts in flowspec validation code which
ultimately led to some code being a bit rewritten, not only adapted from
this or that branch, yet it is still in a limit of a merge.
Validation is called internally from route table at the same place where
nexthop resolution is done. Also accounting for rte->sender semantics
change (not a channel but the import hook instead).
For now, all route attributes are stored as eattrs in ea_list. This
should make route manipulation easier and it also allows for a layered
approach of route attributes where updates from filters will be stored
as an overlay over the previous version.
As there is either a nexthop or another destination specification
(or othing in case of ROAs and Flowspec), it may be merged together.
This code is somehow quirky and should be replaced in future by better
implementation of nexthop.
Also flowspec validation result has its own attribute now as it doesn't
have anything to do with route nexthop.
This doesn't do anything more than to put the whole structure inside
adata. The overall performance is certainly going downhill; we'll
optimize this later.
Anyway, this is one of the latest items inside rta and in several
commits we may drop rta completely and move to eattrs-only routes.
The prefix hash table in BGP used the same hash function as the rtable.
When a batch of routes are exported during feed/flush to the BGP, they
all have similar hash values, so they are all crowded in a few slots in
the BGP prefix table (which is much smaller - around the size of the
batch - and uses higher bits from hash values), making it much slower due
to excessive collisions. Use a different hash function to avoid this.
Also, increase the batch size to fill 4k BGP packets and increase minimum
BGP bucket and prefix hash sizes to avoid back and forth resizing during
flushes.
This leads to order of magnitude faster flushes (on my test data).
The route scope attribute was used for simple user route marking. As
there is a better tool for this (custom attributes), the old and limited
way can be dropped.
Some tokens are both keywords and symbols. For now, we allow only
specific keywords to be redefined; in future, more of the keywords may
be added to this category.
The redefinable keywords must be specified in any .Y file as follows:
toksym: THE_KEYWORD ;
See proto/bgp/config.Y for an example.
Also dropped a lot of unused terminals.
Changes in internal API:
* Every route attribute must be defined as struct ea_class somewhere.
* Registration of route attributes known at startup must be done by
ea_register_init() from protocol build functions.
* Every attribute has now its symbol registered in a global symbol table
defined as SYM_ATTRIBUTE
* All attribute ID's are dynamically allocated.
* Attribute value custom formatting hook is defined in the ea_class.
* Attribute names are the same for display and filters, always prefixed
by protocol name.
Also added some unit testing code for filters with route attributes.
This commit removes the EAF_TYPE_* namespace completely and also for
route attributes, filter-based types T_* are used. This simplifies
fetching and setting route attributes from filters.
Also, there is now union bval which serves as an universal value holder
instead of private unions held separately by eattr and filter code.
It is too cryptic to flush tmp_linpool in these cases and we don't want
anybody in the future to break this code by adding an allocation
somewhere which should persist over that flush.
Saving and restoring linpool state is safer.
Implement flowspec validation procedure as described in RFC 8955 sec. 6
and RFC 9117. The Validation procedure enforces that only routers in the
forwarding path for a network can originate flowspec rules for that
network.
The patch adds new mechanism for tracking inter-table dependencies, which
is necessary as the flowspec validation depends on IP routes, and flowspec
rules must be revalidated when best IP routes change.
The validation procedure is disabled by default and requires that
relevant IP table uses trie, as it uses interval queries for subnets.
One of previous commits added error logging of invalid routes. This
also inadvertently caused error logging of route loops, which should
be ignored silently. Fix that.
Most error messages in attribute processing are in rx/decode step and
these use L_REMOTE log class. But there are few that are in tx/export
step and these should use L_ERR log class.
Use tx-specific macro (REJECT()) in tx/export code and rename field
err_withdraw to err_reject in struct bgp_export_state to ensure that
appropriate error reporting macros are called in proper contexts.
This commit prevents use-after-free of routes belonging to protocols
which have been already destroyed, delaying also all the protocols'
shutdown until all of their routes have been finally propagated through
all the pipes down to the appropriate exports.
The use-after-free was somehow hypothetic yet theoretically possible in
rare conditions, when one BGP protocol authors a lot of routes and the
user deletes that protocol by reconfiguring in the same time as next hop
update is requested, causing rte_better() to be called on a
not-yet-pruned network prefix while the owner protocol has been already
freed.
In parallel execution environments, this would happen an inter-thread
use-after-free, causing possible heisenbugs or other nasty problems.
There is a simple universal IO loop, taking care of events, timers and
sockets. Primarily, one instance of a protocol should use exactly one IO
loop to do all its work, as is now done in BFD.
Contrary to previous versions, the loop is now launched and cleaned by
the nest/proto.c code, allowing for a protocol to just request its own
loop by setting the loop's lock order in config higher than the_bird.
It is not supported nor checked if any protocol changed the requested
lock order in reconfigure. No protocol should do it at all.
* internal tables are now more standalone, having their own import and
export hooks
* route refresh/reload uses stale counter instead of stale flag,
allowing to drop walking the table at the beginning
* route modify (by BGP LLGR) is now done by a special refeed hook,
reimporting the modified routes directly without filters
Channels have now included rt_import_req and rt_export_req to hook into
the table instead of just one list node. This will (in future) allow for:
* channel import and export bound to different tables
* more efficient pipe code (dropping most of the channel code)
* conversion of 'show route' to a special kind of export
* temporary static routes from CLI
The import / export states are also updated to the new algorithms.
Routes are now allocated only when they are just to be inserted to the
table. Updating a route needs a locally allocated route structure.
Ownership of the attributes is also now not transfered from protocols to
tables and vice versa but just borrowed which should be easier to handle
in a multithreaded environment.
Routes from downed protocols stay in rtable (until next rtable prune
cycle ends) and may be even exported to another protocol. In BGP case,
source BGP protocol is examined, although dynamic parts (including
neighbor entries) are already freed. That may lead to crash under some
race conditions. Ensure that freed neighbor entry is not accessed to
avoid this issue.
The flag makes sense just in external representation. It is reset during
BGP export, but keeping it internally broke MRT dumps for short attributes
that used it anyways.
Thanks to Simon Marsh for the bugreport and the patch.
BGP statistics code was preliminary and i wanted to replace it by
separate 'show X stats' command. The patch hides the preliminary
output in 'show protocols all' so it is not part of the released
version.
This is an implementation of draft-walton-bgp-hostname-capability-02.
It is implemented since quite some time for FRR and in datacenter, this
gives a nice output to avoid using IP addresses.
It is disabled by default. The hostname is retrieved from uname(2) and
can be overriden with "hostname" option. The domain name is never set
nor displayed.
Minor changes by committer.
Add fake MP_REACH_NLRI attribute with BGP next hop when encoding MRT
table dumps for IPv6 routes. That is necessary to encode next hop as
NEXT_HOP attribute is not used for MP-BGP.
Thanks to Santiago Aggio for the bugreport.
The option is not implemented since transition to 2.0 and no plan to add it.
Also remove some deprecated RTS_* valus from documentation.
Thanks to Sébastien Parisot for notification.
Merge multiple BFD option blocks in BGP configs instead of using the last
one. That is necessary for proper handling of templates when BFD options
are used both in a BGP template and in a BGP protocol derived from that
template.
BFD session options are configured per interface in BFD protocol. This
patch allows to specify them also per-request in protocols requesting
sessions (currently limited to BGP).
There are three common ways how to encode IPv6 link-local-only next hops:
(:: ll), (ll), and (ll ll). We use the first one but we should accept all
three. The patch fixes handling of the last one.
Thanks to Sebastian Hahn for the bugreport.
The RFC 5575 does not explicitly reject flowspec rules without dst part,
it just requires dst part in validation procedure for feasibility, which
we do not implement anyway. Thus flow without dst prefix is syntactically
valid, but unfeasible (if feasibilty testing is done).
Thanks to Alex D. for the bugreport.
When dynamic BGP with remote range is configured, MD5SIG needs to use
newer socket option (TCP_MD5SIG_EXT) to specify remote addres range for
listening socket.
Thanks to Adam Kułagowski for the suggestion.
During NLRI parsing of IPv6 Flowspec, dst prefix was not properly
extracted from NLRI, therefore a received flow was stored in a different
position in flowspec routing table, and was not reachable by command
'show route <flow>'.
Add proper prefix part accessors to flowspec code and use them from BGP
NLRI parsing code.
Thanks to Alex D. for the bugreport.
This is optional check described in RFC 4271. Although this can be also
done by filters, it is widely implemented option in BGP implementations.
Thanks to Eugene Bogomazov for the original patch.
Transitive extended communities should be removed on external sessions,
the old code them in all cases.
Thanks to Jean-Daniel Pauget for the original patch.
Change of some options requires route refresh, but when import table is
active, channel reload is done from it instead of doing full route
refresh. So in this case we request it internally.
There is an improper check for valid message size, which may lead to
stack overflow and buffer leaks to log when a large message is received.
Thanks to Daniel McCarney for bugreport and analysis.
Instead of having large stack buffer for max amount of AFI/SAFI pairs.
The old code is not correct w.r.t. extendeded option length, as more
AFI/SAFI pairs may fit into the capability option.
The patch implements optional internal export table to a channel and
hooks it to BGP so it can be used as Adj-RIB-Out. When enabled, all
exported (post-filtered) routes are stored there. An export table can be
examined using e.g. 'show route export table bgp1.ipv4'.
Several BGP channel options (including 'next hop self') could be
reconfigured without session reset, with just route refeed/refresh.
The patch improves reconfiguration code to do it that way.
The 'deterministic med' option is implemented by suppressing other than
best-in-group routes (grouped by ASN) from best route selection. This
interferes with 'merge paths' as supressed routes are no longer mergable
with best route. This is fixed by suppressing only those routes that are
not mergable with best-in-group route.
If BGP has too many data to send and BIRD is slower than the link, TX is
always possible until all data is sent. This patch limits maximum number
of generated BGP messages in one iteration of TX hook.
When 'graceful down' command is entered, protocols are shut down
with regard to graceful restart. Namely Kernel protocol does
not remove routes and BGP protocol does not send notification,
just closes the connection.
Useful for implementation of agents implementing the SNMP-BGP MIB, which
requires the local AS of a session to be specified.
Thanks to Jan-Philipp Litza for the patch.
Support for dynamically spawning BGP protocols for incoming connections.
Use 'neighbor range' to specify range of valid neighbor addresses, then
incoming connections from these addresses spawn new BGP instances.
When BGP connection is opened, it may happen that rx hook (with remote
OPEN) is called before tx hook (for local OPEN). Therefore, we need to do
internal changes (like setting local_caps) synchronously with OPENSENT
transition and we need to ensure that OPEN is sent before KEEPALIVE.
Allow to specify just 'internal' or 'external' for remote neighbor
instead of specific ASN. In the second case that means BGP peers with
any non-local ASNs are accepted.
This is a major change of how the filters are interpreted. If everything
works how it should, it should not affect you unless you are hacking the
filters themselves.
Anyway, this change should make a huge improvement in the filter performance
as previous benchmarks showed that our major problem lies in the
recursion itself.
There are also some changes in nest and protocols, related mostly to
spreading const declarations throughout the whole BIRD and also to
refactored dynamic attribute definitions. The need of these came up
during the whole work and it is too difficult to split out these
not-so-related changes.
Since v2 we have multiple listening BGP sockets, and each BGP protocol
has associated one of them. Use listening socket that accepted the
incoming connection as a key in the dispatch process so only BGP
protocols assocaited with that listening socket can be selected.
This is necesary for proper dispatch when VRFs are used.
Extend 'next hop keep' and 'next hop self' options to have boolean values
(enabled / disabled) and also values 'ibgp'/ 'ebgp' to restrict it to
routes received from IBGP / EBGP. This allows to have it enabled by
default in some cases, matches features of other implementations, and
allows to handle some strange cases like EBGP border router with 'next
hop self' also doing IBGP route reflecting.
Change default of 'next hop keep' to enabled for route servers, and
'ibgp' for route reflectors.
Update documentation for these options.
When route is exported to regular EBGP, local ASN should be prepended to
AS_PATH. When route is propagated by route server (between RS-marked
EBGP peers), it should not change AS_PATH. Question is what to do in
other cases (from non-RS EBGP, IBGP, or locally originated to RS EBGP).
In 1.6.x, we did not prepend ASN in non-RS EBGP or IBGP to RS EBGP, but
we prepended in local to RS EBGP.
In 2.0.x, we changed that so only RS-EBGP to RS-EBGP is not prepended.
We received some negative responses (thanks to heisenbug and Alexander
Zubkov), we decided to change it back. One reason is that it is simple
to modify the AS_PATH by filters, but not possible to un-modify
changes done by BGP itself. Also, as 1.6.x behavior was not really
consistent, the final behavior is that ASN is never prepended when
exported to RS EBGP, like to IBGP.
Note that i do not express an opinion about whether such configurations
are even reasonable.
The patch implements optional internal import table to a channel and
hooks it to BGP so it can be used as Adj-RIB-In. When enabled, all
received (pre-filtered) routes are stored there and import filters can
be re-evaluated without explicit route refresh. An import table can be
examined using e.g. 'show route import table bgp1.ipv4'.
When a new channel is found during reconfiguration, do force restart
of the protocol, like with any other un-reconfigurable change.
The old behavior was that the new channel was added but remained in down
state, even if the protocol was up, so a manual protocol restart was
often necessary.
In the future this should be improved such that a reconfigurable
channel addition (e.g. direct) is accepted and channel is started,
while an un-reconfigurable addition forces protocol restart.
Once upon a time, far far away, there were the old Bird developers
discussing what direction of route flow shall be called import and
export. They decided to say "import to protocol" and "export to table"
when speaking about a protocol. When speaking about a table, they
spoke about "importing to table" and "exporting to protocol".
The latter terminology was adopted in configuration, then also the
bird CLI in commit ea2ae6dd0 started to use it (in year 2009). Now
it's 2018 and the terminology is the latter. Import is from protocol to
table, export is from table to protocol. Anyway, there was still an
import_control hook which executed right before route export.
One thing is funny. There are two commits in April 1999 with just two
minutes between them. The older announces the final settlement
on config terminology, the newer uses the other definition. Let's see
their commit messages as the git-log tool shows them (the newer first):
commit 9e0e485e50
Author: Martin Mares <mj@ucw.cz>
Date: Mon Apr 5 20:17:59 1999 +0000
Added some new protocol hooks (look at the comments for better explanation):
make_tmp_attrs Convert inline attributes to ea_list
store_tmp_attrs Convert ea_list to inline attributes
import_control Pre-import decisions
commit 5056c559c4
Author: Martin Mares <mj@ucw.cz>
Date: Mon Apr 5 20:15:31 1999 +0000
Changed syntax of attaching filters to protocols to hopefully the final
version:
EXPORT <filter-spec> for outbound routes (i.e., those announced
by BIRD to the rest of the world).
IMPORT <filter-spec> for inbound routes (i.e., those imported
by BIRD from the rest of the world).
where <filter-spec> is one of:
ALL pass all routes
NONE drop all routes
FILTER <name> use named filter
FILTER { <filter> } use explicitly defined filter
For all protocols, the default is IMPORT ALL, EXPORT NONE. This includes
the kernel protocol, so that you need to add EXPORT ALL to get the previous
configuration of kernel syncer (as usually, see doc/bird.conf.example for
a bird.conf example :)).
Let's say RIP to this almost 19-years-old inconsistency. For now, if you
import a route, it is always from protocol to table. If you export a
route, it is always from table to protocol.
And they lived happily ever after.
The new MRT protocol is responsible for periodic RIB table dumps in the
MRT format (RFC 6396). Also the existing code for BGP4MP MRT dumps is
refactored and splitted between BGP to MRT protocols, will be more
integrated into MRT in the future.
Example:
protocol mrt {
table "*";
filename "%N_%F_%T.mrt";
period 60;
}
It is partially based on the old MRT code from Pavel Tvrdik.
We currently cannot assing local labels, but we can still be LSP egress
router. Therefore when we announce labeled route with local next-hop, we
should announce implicit-NULL label instead of rejecting it completely.
RFC 3107 was bit vague with regard to labeled withdrawals, RFC 8277
clarified that. The old code was incompatible with some implementations,
namely with Juniper.
Thanks to Vadim Fedorenko for the original patch.
This is a fundamental change of an original (1999) concept of route
processing inside BIRD. During import/export, there was a temporary
ea_list created which was to be used instead of the another one inside
the route itself.
This led to some confusion, quirks, and strange filter code that handled
extended route attributes. Dropping it now.
The protocol interface has changed in an uniform way -- the
`struct ea_list *attrs` argument has been removed from store_tmp_attrs(),
import_control(), rt_notify() and get_route_info().