When there is a continuos stream of CLI commands, cli_get_command()
always returns 1 (there is a new command). Anyway, the socket receive
buffer was reset only when there was no command at all, leading to a
strange behavior: after a while, the CLI receive buffer came to its end,
then read() was called with zero size buffer, it returned 0 which was
interpreted as EOF.
The patch fixes that by resetting the buffer position after each command
and moving remaining data at the beginning of buffer.
Thanks to Maria Matejka for examining the bug and for the original bugfix.
When filtered routes (enabled by 'import keep filtered' option) are
updated, they trigger announcements by rte_announce(). For regular
channels (e.g. type RA_OPTIMAL or RA_ANY) such announcement is just
ignored, but in case of RA_ACCEPTED (BGP peer with 'secondary' option)
it just reannounces the old (and still valid) best route.
The patch ensures that such no-change is ignored even for these channels.
Add BGP channel option 'next hop prefer global' that modifies BGP
recursive next hop resolution to use global next hop IPv6 address instead
of link-local next hop IPv6 address for immediate next hop of received
routes.
It is useful to distinguish whehter channel config returned from
channel_config_get() was allocated new, or existing from template.
Caller may want to initialize new ones.
In principle, the channel list is a list of parent struct proto and can
contain general structures of type struct channel, That is useful e.g.
for adding MPLS channels to BGP.
In some specific configurations, it was possible to send BIRD into an
infinite loop of recursive next hop resolution. This was caused by route
priority inversion.
To prevent priority inversions affecting other next hops, we simply
refuse to resolve any next hop if the best route for the matching prefix
is recursive or any other route with the same preference is recursive.
Next hop resolution doesn't change route priority, therefore it is
perfectly OK to resolve BGP next hops e.g. by an OSPF route, yet if the
same (or covering) prefix is also announced by iBGP, by retraction of
the OSPF route we would get a possible priority inversion.
By this, the requesting channels do the timers in their own loops,
avoiding unnecessary synchronization when the central timer went off.
This is of course less effective for now, yet it allows to easily
implement selective reloads in future.
Instead of synchronous notifications, we use the asynchronous export
framework to notify flowspec src route updates. This allows us to
invoke flowspec revalidation without locking collisions.
Instead of synchronous notifications, we use the asynchronous export
framework to notify also hostcache updates. This allows us to do the
hostcache update and the subsequent next hop update notification without
locking collisions.
We can't free the network structures before the export has been cleaned
up, therefore it makes more sense to request prune only after export
cleanup. This change also reduces prune calls on table shutdown.
These routines detect the export congestion (as defined by configurable
thresholds) and propagate the state to readers. There are no readers for
now, they will be added in following commits.
In multithreaded environment, we need to pass messages between workers.
This is done by queuing events to their respective queues. The
double-linked list is not really useful for that as it needs locking
everywhere.
This commit rewrites the event subsystem to use a single-linked list
where events are enqueued by a single atomic instruction and the queue
is processed after atomically moving the whole queue aside.
There were more conflicts that I'd like to see, most notably in route
export. If a bisect identifies this commit with something related, it
may be simply true that this commit introduces that bug. Let's hope it
doesn't happen.
The invalid routes were filtered out before they could ever get
exported, yet some of the routines need them available, e.g. for
display or import reload.
Now the invalid routes are properly exported and dropped in channel
export routines instead.
Introduced by 13ef5e53dd, the CLI was not
properly cleaned up when the command finished, causing BIRD to not parse
any other command after "show route".
For BGP LLGR purposes, there was an API allowing a protocol to directly
modify their stale routes in table before flushing them. This API was
called by the table prune routine which violates the future locking
requirements.
Instead of this, BGP now requests a special route export and reimports
these routes into the table, allowing for asynchronous execution without
locking the table on export.
Until now, we were marking routes as REF_STALE and REF_DISCARD to
cleanup old routes after route refresh. This needed a synchronous route
table walk at both beginning and the end of route refresh routine,
marking the routes by the flags.
We avoid these walks by using a stale counter. Every route contains:
u8 stale_cycle;
Every import hook contains:
u8 stale_set;
u8 stale_valid;
u8 stale_pruned;
u8 stale_pruning;
In base_state, stale_set == stale_valid == stale_pruned == stale_pruning
and all routes' stale_cycle also have the same value.
The route refresh looks like follows:
+ ----------- + --------- + ----------- + ------------- + ------------ +
| | stale_set | stale_valid | stale_pruning | stale_pruned |
| Base | x | x | x | x |
| Begin | x+1 | x | x | x |
... now routes are being inserted with stale_cycle == (x+1)
| End | x+1 | x+1 | x | x |
... now table pruning routine is scheduled
| Prune begin | x+1 | x+1 | x+1 | x |
... now routes with stale_cycle not between stale_set and stale_valid
are deleted
| Prune end | x+1 | x+1 | x+1 | x+1 |
+ ----------- + --------- + ----------- + ------------- + ------------ +
The pruning routine is asynchronous and may have high latency in
high-load environments. Therefore, multiple route refresh requests may
happen before the pruning routine starts, leading to this situation:
| Prune begin | x+k | x+k | x -> x+k | x |
... or even
| Prune begin | x+k+1 | x+k | x -> x+k | x |
... if the prune event starts while another route refresh is running.
In such a case, the pruning routine still deletes routes not fitting
between stale_set and and stale_valid, effectively pruning the remnants
of all unpruned route refreshes from before:
| Prune end | x+k | x+k | x+k | x+k |
In extremely rare cases, there may happen too many route refreshes
before any route prune routine finishes. If the difference between
stale_valid and stale_pruned becomes more than 128 when requesting for
another route refresh, the routine walks the table synchronously and
resets all the stale values to a base state, while logging a warning.
Until now, if export table was enabled, Nest was storing exactly the
route before rt_notify() was called on it. This was quite sloppy and
spooky and it also wasn't reflecting the changes BGP does before
sending. And as BGP is storing the routes to be sent anyway, we are
simply keeping the already-sent routes in there to better rule out
unneeded reexports.
Some of the route attributes (IGP metric, preference) make no sense in
BGP, therefore these will be probably replaced by something sensible.
Also the nexthop shown in the short output is the BGP nexthop.
For loops allow to iterate over elements in compound data like BGP paths
or community lists. The syntax is:
for [ <type> ] <variable> in <expr> do <command-body>
When f_line is done, we have to pop the stack frame. The old code just
removed nominal number of args/vars. Change it to use stored ventry value
modified by number of returned values. This allows to allocate variables
on a stack frame during execution of f_lines instead of just at start.
But we need to know the number of returned values for a f_line. It is 1
for term, 0 for cmd. Store that to f_line during linearization.
Passing protocol to preexport was in fact a historical relic from the
old times when channels weren't a thing. Refactoring that to match
current extensibility needs.