The UDP logging had to be substantially rewritten due to a different
logging backend and reconfiguration mechanisms.
Conflicts:
doc/bird.sgml
sysdep/unix/config.Y
sysdep/unix/io.c
sysdep/unix/log.c
sysdep/unix/unix.h
There is a long-known CC attribute cleanup which allows to call a custom
cleanup function when an auto-storage variable ceases to exist. We're
gonna use it for end-of-loop and leave-locked-block macros.
This commit adds a static unit test for this compiler feature to be sure
that it really does what we want. We're looking forward to the next ISO
C norm where this may finally get a nice syntax and standardization.
Add a new protocol offering route aggregation.
User can specify list of route attributes in the configuration file and
run route aggregation on the export side of the pipe protocol. Routes are
sorted and for every group of equivalent routes new route is created and
exported to the routing table. It is also possible to specify filter
which will run for every route before aggregation.
Furthermore, it will be possible to set attributes of new routes
according to attributes of the aggregated routes.
This is a work in progress.
Original work by Igor Putovny, subsequent cleanups and finalization by
Maria Matejka.
This is a split-commit of the neighboring aggregator branch
with a bit improved lvalue handling, to have easier merge into v3.
Some [redacted] (yes, myself) had a really bad idea
to rename nest/route.h to nest/rt.h while refactoring
some data structures out of it.
This led to unnecessarily complex problems with
merging updates from v2. Reverting this change
to make my life a bit easier.
At least it needed only one find-sed command:
find -name '*.[chlY]' -type f -exec sed -i 's#nest/rt.h#nest/route.h#' '{}' +
This merge was particularly difficult. I finally resorted to delete the
symbol scope active flag altogether and replace its usage by other
means.
Also I had to update custom route attribute registration to fit
both the scope updates in v2 and the data model in v3.
The MPLS subsystem manages MPLS labels and handles their allocation to
MPLS-aware routing protocols. These labels are then attached to IP or VPN
routes representing label switched paths -- LSPs.
There was already a preliminary MPLS support consisting of MPLS label
net_addr, MPLS routing tables with static MPLS routes, remote labels in
next hops, and kernel protocol support.
This patch adds the MPLS domain as a basic structure representing local
label space with dynamic label allocator and configurable label ranges.
To represent LSPs, allocated local labels can be attached as route
attributes to IP or VPN routes with local labels as attributes.
There are several steps for handling LSP routes in routing protocols --
deciding to which forwarding equivalence class (FEC) the LSP route
belongs, allocating labels for new FECs, announcing MPLS routes for new
FECs, attaching labels to LSP routes. The FEC map structure implements
basic code for managing FECs in routing protocols, therefore existing
protocols can be made MPLS-aware by adding FEC map and delegating
most work related to local label management to it.
If the protocol supports route refresh on export, we keep the stop-start
method of route refeed. This applies for BGP with ERR or with export
table on, for OSPF, Babel, RIP or Pipe.
For BGP without ERR or for future selective ROA reloads, we're adding an
auxiliary export request, doing the refeed while the main export request
is running, somehow resembling the original method of BIRD 2 refeed.
There is also a refeed request queue to keep track of different refeed
requests.
The original logging routines were locking a common mutex. This led to
massive underperformance and unwanted serialization when heavily logging
due to lock contention. Now the logging is lockless, though still
serializing on write() syscalls to the same filedescriptor.
This change also brings in a persistent logging channel structures and
thus avoids writing into active configuration data structures during
regular run.