When BIRD has no free memory mapped, it allocates several pages in
advance just to be sure that there is some memory available if needed.
This hysteresis tactics works quite well to reduce memory ping-ping with
kernel.
Yet it had a subtle bug: this pre-allocation didn't take a memory
coldlist into account, therefore requesting new pages from kernel even
in cases when there were other pages available. This led to slow memory
bloating.
To demonstrate this behavior fast enough to be seen well, you may:
* temporarily set the values in sysdep/unix/alloc.c as follows to
exacerbate the issue:
#define KEEP_PAGES_MAIN_MAX 4096
#define KEEP_PAGES_MAIN_MIN 1000
#define CLEANUP_PAGES_BULK 4096
* create a config file with several millions of static routes
* periodically disable all static protocols and then reload config
* log memory consumption
This should give you a steady growth rate of about 16kB per cycle. If
you don't set the values this high, the issue happens much more slowly,
yet after 14 days of running, you are going to see an OOM kill.
After this fix, pre-allocation uses the memory coldlist to get some hot
pages and the same test as described here gets you a perfectly stable
constant memory consumption (after some initial wobbling).
Thanks to NIX-CZ for reporting and helping to investigate this issue.
Thanks to Santiago for finding the cause in the code.
The usage pattern implemented in allocator seems to be incompatible with
transparent huge pages, as memory released using madvise(MADV_DONTNEED)
with regular page size and alignment does not seem to trigger demotion
of huge pages back to regular pages, even when significant number of
pages is released. Even if demotion is triggered when system memory
is low, it still breaks memory accounting.
Log message before aborting due to watchdog timeout. We have to use
async-safe write to debug log, as it is done in signal handler.
Minor changes from committer.
When there is a continuos stream of CLI commands, cli_get_command()
always returns 1 (there is a new command). Anyway, the socket receive
buffer was reset only when there was no command at all, leading to a
strange behavior: after a while, the CLI receive buffer came to its end,
then read() was called with zero size buffer, it returned 0 which was
interpreted as EOF.
The patch fixes that by resetting the buffer position after each command
and moving remaining data at the beginning of buffer.
Thanks to Maria Matejka for examining the bug and for the original bugfix.
BIRD keeps a previous (old) configuration for the purpose of undo. The
existing code frees it after a new configuration is successfully parsed
during reconfiguration. That causes memory usage spikes as there are
temporarily three configurations (old, current, and new). The patch
changes it to free the old one before parsing the new one (as user
already requested a new config). The disadvantage is that undo is
not available after failed reconfiguration.
Memory unmapping causes slow address space fragmentation, leading in
extreme cases to failing to allocate pages at all. Removing this problem
by keeping all the pages allocated to us, yet calling madvise() to let
kernel dispose of them.
This adds a little complexity and overhead as we have to keep the
pointers to the free pages, therefore to hold e.g. 1 GB of 4K pages with
8B pointers, we have to store 2 MB of data.
This is a reimplementation of commit 0f2be469f897b6d9f925563bbf522438c83522ea
by Alexander Zubkov. In the master branch, changes in commit eb937358
broke setting of channel preference for alien routes learned during
scan. The preference was set only for async routes.
The original solution is extended here to accomodate for v3 specifics.
Changes in commit eb937358 broke setting of channel preference for alien
routes learned during scan. The preference was set only for async routes.
Move common attribute processing part of functions krt_learn_async() and
krt_learn_async() to a separate function to have only one place for such
changes.
Remove compile-time sysdep option CONFIG_ALL_TABLES_AT_ONCE, replace it
with runtime ability to run either separate table scans or shared scan.
On Linux, use separate table scans by default when the netlink socket
option NETLINK_GET_STRICT_CHK is available, but retreat to shared scan
when it fails.
Running separate table scans has advantages where some routing tables are
managed independently, e.g. when multiple routing daemons are running on
the same machine, as kernel routing table modification performance is
significantly reduced when the table is modified while it is being
scanned.
Thanks Daniel Gröber for the original patch and Toke Høiland-Jørgensen
for suggestions.
The learnt routes are now pushed all into the connected table, not only
the best one. This shouldn't do any damage in well managed setups, yet
it should be noted that it is a change of behavior.
If anybody misses a feature which they implemented by misusing this
internal learn table, let us know, we'll consider implementing it in a
better way.