Changes in internal API:
* Every route attribute must be defined as struct ea_class somewhere.
* Registration of route attributes known at startup must be done by
ea_register_init() from protocol build functions.
* Every attribute has now its symbol registered in a global symbol table
defined as SYM_ATTRIBUTE
* All attribute ID's are dynamically allocated.
* Attribute value custom formatting hook is defined in the ea_class.
* Attribute names are the same for display and filters, always prefixed
by protocol name.
Also added some unit testing code for filters with route attributes.
Implicit paddings have undefined values in C. We want the eattr blocks
to be comparable by memcmp and eattrs settable directly by structrure
literals. This check ensures that all paddings in eattr and bval are
explicit and therefore zeroed in all literals.
This commit removes the EAF_TYPE_* namespace completely and also for
route attributes, filter-based types T_* are used. This simplifies
fetching and setting route attributes from filters.
Also, there is now union bval which serves as an universal value holder
instead of private unions held separately by eattr and filter code.
Alignment of slabs should be at least sizeof(ptr) to avoid unaligned
pointers in slab structures. Fixme: Use proper way to choose alignment
for internal allocators.
Attach a prefix trie to IP/VPN/ROA tables. Use it for net_route() and
net_roa_check(). This leads to 3-5x speedups for IPv4 and 5-10x
speedup for IPv6 of these calls.
TODO:
- Rebuild the trie during rt_prune_table()
- Better way to avoid trie_add_prefix() in net_get() for existing tables
- Make it configurable (?)
Add option to socket interface for nonlocal binding, i.e. binding to an
IP address that is not present on interfaces. This behaviour is enabled
when SKF_FREEBIND socket flag is set. For Linux systems, it is
implemented by IP_FREEBIND socket flag.
Minor changes done by commiter.
This feature is intended mostly for checking that BIRD's allocation
strategies don't consume much memory space. There are some cases where
withdrawing routes in a specific order lead to memory fragmentation and
this output should give the user at least a notion of how much memory is
actually used for data storage and how much memory is "just allocated"
or used for overhead.
Also raising the "system allocator overhead estimation" from 8 to 16
bytes; it is probably even more. I've found 16 as a local minimum in
best scenarios among reachable machines. I couldn't find any reasonable
method to estimate this value when BIRD starts up.
This commit also fixes the inaccurate computation of memory overhead for
slabs where the "system allocater overhead estimation" was improperly
added to the size of mmap-ed memory.
We can also quite simply allocate bigger blocks. Anyway, we need these
blocks to be aligned to their size which needs one mmap() two times
bigger and then two munmap()s returning the unaligned parts.
The user can specify -B <N> on startup when <N> is the exponent of 2,
setting the block size to 2^N. On most systems, N is 12, anyway if you
know that your configuration is going to eat gigabytes of RAM, you are
almost forced to raise your block size as you may easily get into memory
fragmentation issues or you have to raise your maximum mapping count,
e.g. "sysctl vm.max_map_count=(number)".
Use 16-way (4bit) branching in prefix trie instead of basic binary
branching. The change makes IPv4 prefix sets almost 3x faster, but
with more memory consumption and much more complicated algorithm.
Together with a previous filter change, it makes IPv4 prefix sets
about ~4.3x faster and slightly smaller (on my test data).