On BSD, the onlink flag is not tracked or reported by kernel. We are
using an heuristic that assigns the onlink flag to routes scanned from
the kernel. We should use the same heuristic even in BSD-Netlink
case, as the onlink flag is not reported here too.
Thanks to Björn König for the original patch.
The Kernel protocol, even with the option 'learn' enabled, ignores
direct routes created by the OS kernel (on Linux these are routes
with rtm_protocol == RTPROT_KERNEL).
Implement optional behavior where both OS kernel and third-party routes
are learned, it can be enabled by 'learn all' option.
Minor changes by committer.
Remove compile-time sysdep option CONFIG_ALL_TABLES_AT_ONCE, replace it
with runtime ability to run either separate table scans or shared scan.
On Linux, use separate table scans by default when the netlink socket
option NETLINK_GET_STRICT_CHK is available, but retreat to shared scan
when it fails.
Running separate table scans has advantages where some routing tables are
managed independently, e.g. when multiple routing daemons are running on
the same machine, as kernel routing table modification performance is
significantly reduced when the table is modified while it is being
scanned.
Thanks Daniel Gröber for the original patch and Toke Høiland-Jørgensen
for suggestions.
The old code stored route verdicts and temporary routes directly in
rtable. The new code do not store received routes (it immediately
compares them with exported routes and resolves conflicts) and uses
internal bitmap to keep track of which routes were received and which
needs to be reinstalled.
By not putting 'invalid' temporary routes to rtable, we keep rtable
in consistent state, therefore scan no longer needs to be atomic
operation and could be splitted to multiple events.
This is a fundamental change of an original (1999) concept of route
processing inside BIRD. During import/export, there was a temporary
ea_list created which was to be used instead of the another one inside
the route itself.
This led to some confusion, quirks, and strange filter code that handled
extended route attributes. Dropping it now.
The protocol interface has changed in an uniform way -- the
`struct ea_list *attrs` argument has been removed from store_tmp_attrs(),
import_control(), rt_notify() and get_route_info().
Also removed the lib-dir merging with sysdep. Updated #include's
accordingly.
Fixed make doc on recent Debian together with moving generated doc into
objdir.
Moved Makefile.in into root dir
Retired all.o and birdlib.a
Linking the final binaries directly from all the .o files.
The patch adds support for channels, structures connecting protocols and
tables and handling most interactions between them. The documentation is
missing yet.
Since 2.6.19, the netlink API defines RTA_TABLE routing attribute to
allow 32-bit routing table IDs. Using this attribute to index routing
tables at Linux, instead of 8-bit rtm_table field.
In usual configuration, such export is already restricted
with the aid of the direct protocol but there are some
races that can circumvent it. This makes it harder to
break kernel device routes. Also adds an option to
disable this restriction.
- BSD kernel syncer is now self-conscious and can learn alien routes
- important bugfix in BSD kernel syncer (crash after protocol restart)
- many minor changes and bugfixes in kernel syncers and neighbor cache
- direct protocol does not generate host and link local routes
- min_scope check is removed, all routes have SCOPE_UNIVERSE by default
- also fixes some remaining compiler warnings
The changes are just too extensive for lazy me to list them
there, but see the comment at the top of sysdep/unix/krt.c.
The code got a bit more ifdeffy than I'd like, though.
Also fixed a bunch of FIXME's and added a couple of others. :)
o Now compatible with filtering.
o Learning of kernel routes supported only on CONFIG_SELF_CONSCIOUS
systems (on the others it's impossible to get it semantically correct).
o Learning now stores all of its routes in a separate fib and selects
the ones the kernel really uses for forwarding packets.
o Better treatment of CONFIG_AUTO_ROUTES ports.
o Lots of internal changes.
o Nothing is configured automatically. You _need_ to specify
the kernel syncer in config file in order to get it started.
o Syncing has been split to route syncer (protocol "Kernel") and
interface syncer (protocol "Device"), device routes are generated
by protocol "Direct" (now can exist in multiple instances, so that
it will be possible to feed different device routes to different
routing tables once multiple tables get supported).
See doc/bird.conf.example for a living example of these shiny features.
(via Netlink). Tweaked kernel synchronization rules a bit. Discovered
locking bug in kernel Netlink :-)
Future plans: Hunt all the bugs and solve all the FIXME's.
The new kernel syncer is cleanly split between generic UNIX module
and OS dependent submodules:
- krt.c (the generic part)
- krt-iface (low-level functions for interface handling)
- krt-scan (low-level functions for routing table scanning)
- krt-set (low-level functions for setting of kernel routes)
krt-set and krt-iface are common for all BSD-like Unices, krt-scan is heavily
system dependent (most Unices require /dev/kmem parsing, Linux uses /proc),
Netlink substitues all three modules.
We expect each UNIX port supports kernel routing table scanning, kernel
interface table scanning, kernel route manipulation and possibly also
asynchronous event notifications (new route, interface state change;
not implemented yet) and build the KRT protocol on the top of these
primitive operations.