This allows to have one main socket for the heavy operations
very restricted just for the appropriate users, whereas the
looking glass socket may be more open.
Implemented an idea originally submitted and requested by Akamai.
When a recursive route with MPLS-labeled nexthop was exported to kernel
and read back, the nexthop_same() failed due to different labels_orig
field and kernel protocol reinstalled it unnecessarily.
For comparing hext hops, route cache has to distinguish ones with
different labels_orig, but KRT has to ignore that, so we need two
nexthop compare functions.
Thanks to Marcel Menzel for the bugreport.
The Kernel protocol, even with the option 'learn' enabled, ignores
direct routes created by the OS kernel (on Linux these are routes
with rtm_protocol == RTPROT_KERNEL).
Implement optional behavior where both OS kernel and third-party routes
are learned, it can be enabled by 'learn all' option.
Minor changes by committer.
When regular event was added from work event, we did remember that
regular event list was empty and therefore we did not use zero time
in poll(). This leads to ~3 s latency in route reload during
reconfiguration.
The MPLS subsystem manages MPLS labels and handles their allocation to
MPLS-aware routing protocols. These labels are then attached to IP or VPN
routes representing label switched paths -- LSPs.
There was already a preliminary MPLS support consisting of MPLS label
net_addr, MPLS routing tables with static MPLS routes, remote labels in
next hops, and kernel protocol support.
This patch adds the MPLS domain as a basic structure representing local
label space with dynamic label allocator and configurable label ranges.
To represent LSPs, allocated local labels can be attached as route
attributes to IP or VPN routes with local labels as attributes.
There are several steps for handling LSP routes in routing protocols --
deciding to which forwarding equivalence class (FEC) the LSP route
belongs, allocating labels for new FECs, announcing MPLS routes for new
FECs, attaching labels to LSP routes. The FEC map structure implements
basic code for managing FECs in routing protocols, therefore existing
protocols can be made MPLS-aware by adding FEC map and delegating
most work related to local label management to it.
Add a current_time_now() function which gets an immediate monotonic
timestamp instead of using the cached value from the event loop. This is
useful for callers that need precise times, such as the Babel RTT
measurement code.
Minor changes by committer.
When BIRD has no free memory mapped, it allocates several pages in
advance just to be sure that there is some memory available if needed.
This hysteresis tactics works quite well to reduce memory ping-ping with
kernel.
Yet it had a subtle bug: this pre-allocation didn't take a memory
coldlist into account, therefore requesting new pages from kernel even
in cases when there were other pages available. This led to slow memory
bloating.
To demonstrate this behavior fast enough to be seen well, you may:
* temporarily set the values in sysdep/unix/alloc.c as follows to
exacerbate the issue:
#define KEEP_PAGES_MAIN_MAX 4096
#define KEEP_PAGES_MAIN_MIN 1000
#define CLEANUP_PAGES_BULK 4096
* create a config file with several millions of static routes
* periodically disable all static protocols and then reload config
* log memory consumption
This should give you a steady growth rate of about 16kB per cycle. If
you don't set the values this high, the issue happens much more slowly,
yet after 14 days of running, you are going to see an OOM kill.
After this fix, pre-allocation uses the memory coldlist to get some hot
pages and the same test as described here gets you a perfectly stable
constant memory consumption (after some initial wobbling).
Thanks to NIX-CZ for reporting and helping to investigate this issue.
Thanks to Santiago for finding the cause in the code.
The usage pattern implemented in allocator seems to be incompatible with
transparent huge pages, as memory released using madvise(MADV_DONTNEED)
with regular page size and alignment does not seem to trigger demotion
of huge pages back to regular pages, even when significant number of
pages is released. Even if demotion is triggered when system memory
is low, it still breaks memory accounting.
Log message before aborting due to watchdog timeout. We have to use
async-safe write to debug log, as it is done in signal handler.
Minor changes from committer.
When there is a continuos stream of CLI commands, cli_get_command()
always returns 1 (there is a new command). Anyway, the socket receive
buffer was reset only when there was no command at all, leading to a
strange behavior: after a while, the CLI receive buffer came to its end,
then read() was called with zero size buffer, it returned 0 which was
interpreted as EOF.
The patch fixes that by resetting the buffer position after each command
and moving remaining data at the beginning of buffer.
Thanks to Maria Matejka for examining the bug and for the original bugfix.
BIRD keeps a previous (old) configuration for the purpose of undo. The
existing code frees it after a new configuration is successfully parsed
during reconfiguration. That causes memory usage spikes as there are
temporarily three configurations (old, current, and new). The patch
changes it to free the old one before parsing the new one (as user
already requested a new config). The disadvantage is that undo is
not available after failed reconfiguration.
Memory unmapping causes slow address space fragmentation, leading in
extreme cases to failing to allocate pages at all. Removing this problem
by keeping all the pages allocated to us, yet calling madvise() to let
kernel dispose of them.
This adds a little complexity and overhead as we have to keep the
pointers to the free pages, therefore to hold e.g. 1 GB of 4K pages with
8B pointers, we have to store 2 MB of data.
Changes in commit eb937358 broke setting of channel preference for alien
routes learned during scan. The preference was set only for async routes.
Move common attribute processing part of functions krt_learn_async() and
krt_learn_async() to a separate function to have only one place for such
changes.
Remove compile-time sysdep option CONFIG_ALL_TABLES_AT_ONCE, replace it
with runtime ability to run either separate table scans or shared scan.
On Linux, use separate table scans by default when the netlink socket
option NETLINK_GET_STRICT_CHK is available, but retreat to shared scan
when it fails.
Running separate table scans has advantages where some routing tables are
managed independently, e.g. when multiple routing daemons are running on
the same machine, as kernel routing table modification performance is
significantly reduced when the table is modified while it is being
scanned.
Thanks Daniel Gröber for the original patch and Toke Høiland-Jørgensen
for suggestions.
Passing protocol to preexport was in fact a historical relic from the
old times when channels weren't a thing. Refactoring that to match
current extensibility needs.
When BIRD was munmapping too many pages, it sometimes aborted, saying
that munmap failed with "Not enough memory" as the address space was
getting more and more fragmented.
There is a workaround in place, simply keeping that page for future use,
yet it has never been compiled in because I somehow forgot to include
errno.h. And because I also thought that somebody may have ENOMEM not
defined (why?!), there was a check which quietly omitted that
workaround.
Anyway, ENOMEM is POSIX. It's an utter nonsense to check for its
existence. If it doesn't exist, something is broken.
Add option to socket interface for nonlocal binding, i.e. binding to an
IP address that is not present on interfaces. This behaviour is enabled
when SKF_FREEBIND socket flag is set. For Linux systems, it is
implemented by IP_FREEBIND socket flag.
Minor changes done by commiter.