In our usecase, these are impossibly greedy because we often
free memory in a different thread than where we allocate, forcing
the default allocator to scatter the used memory all over the place.
We have now better methods how to measure overall performance
and this obsolete protocol has basically rotten away. If anybody
needs its features, feel free to revive it in future.
Add a new protocol offering route aggregation.
User can specify list of route attributes in the configuration file and
run route aggregation on the export side of the pipe protocol. Routes are
sorted and for every group of equivalent routes new route is created and
exported to the routing table. It is also possible to specify filter
which will run for every route before aggregation.
Furthermore, it will be possible to set attributes of new routes
according to attributes of the aggregated routes.
This is a work in progress.
Original work by Igor Putovny, subsequent cleanups and finalization by
Maria Matejka.
This is a split-commit of the neighboring aggregator branch
with a bit improved lvalue handling, to have easier merge into v3.
The L3VPN protocol implements RFC 4364 BGP/MPLS VPNs using MPLS backbone.
It works similarly to pipe. It connects IP table (one per VRF) with (global)
VPN table. Routes passed from VPN table to IP table are stripped of RD and
filtered by import targets, routes passed in the other direction are extended
with RD, MPLS labels and export targets in extended communities. A separate
MPLS channel is used to announce MPLS routes for the labels.
Add a new protocol offering route aggregation.
User can specify list of route attributes in the configuration file and
run route aggregation on the export side of the pipe protocol. Routes are
sorted and for every group of equivalent routes new route is created and
exported to the routing table. It is also possible to specify filter
which will run for every route before aggregation.
Furthermore, it will be possible to set attributes of new routes
according to attributes of the aggregated routes.
This is a work in progress.
Original work by Igor Putovny, subsequent cleanups and finalization by
Maria Matejka.
Initial implementation of a basic subset of the BMP (BGP Monitoring
Protocol, RFC 7854) from Akamai team. Submitted for further review
and improvement.
In multithreaded environment, we need to pass messages between workers.
This is done by queuing events to their respective queues. The
double-linked list is not really useful for that as it needs locking
everywhere.
This commit rewrites the event subsystem to use a single-linked list
where events are enqueued by a single atomic instruction and the queue
is processed after atomically moving the whole queue aside.
Implicit paddings have undefined values in C. We want the eattr blocks
to be comparable by memcmp and eattrs settable directly by structrure
literals. This check ensures that all paddings in eattr and bval are
explicit and therefore zeroed in all literals.
Add a wrapper function in sysdep to get random bytes, and required checks
in configure.ac to select how to do it. The configure script tries, in
order, getrandom(), getentropy() and reading from /dev/urandom.
From now, there are no auxiliary pointers stored in the free slab nodes.
This led to strange debugging problems if use-after-free happened in
slab-allocated structures, especially if the structure's first member is
a next pointer.
This also reduces the memory needed by 1 pointer per allocated object.
OTOH, we now rely on pages being aligned to their size's multiple, which
is quite common anyway.
This protocol is highly experimental and nobody should use it in
production. Anyway it may help you getting some insight into what eats
so much time in filter processing.