0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-08 18:11:54 +00:00

TMP: rebase elsewhere

This commit is contained in:
Maria Matejka 2023-11-10 21:33:53 +01:00
parent 4c6fd84c8f
commit db57ee2e03

View File

@ -72,4 +72,123 @@ extern DOMAIN(the_bird) the_bird_domain;
#define ASSERT_THE_BIRD_LOCKED ({ if (!the_bird_locked()) bug("The BIRD lock must be locked here: %s:%d", __FILE__, __LINE__); }) #define ASSERT_THE_BIRD_LOCKED ({ if (!the_bird_locked()) bug("The BIRD lock must be locked here: %s:%d", __FILE__, __LINE__); })
/**
* Objects bound with domains
*
* First, we need some object to have its locked and unlocked part.
* This is accomplished typically by the following pattern:
*
* struct foo_public {
* ... // Public fields
* DOMAIN(bar) lock; // The assigned domain
* };
*
* struct foo_private {
* struct foo_public; // Importing public fields
* struct foo_private **locked_at; // Auxiliary field for locking routines
* ... // Private fields
* };
*
* typedef union foo {
* struct foo_public;
* struct foo_private priv;
* } foo;
*
* All persistently stored object pointers MUST point to the public parts.
* If accessing the locked object from embedded objects, great care must
* be applied to always SKIP_BACK to the public object version, not the
* private one.
*
* To access the private object parts, either the private object pointer
* is explicitly given to us, therefore assuming somewhere else the domain
* has been locked, or we have to lock the domain ourselves. To do that,
* there are some handy macros.
*/
#define LOBJ_LOCK_SIMPLE(_obj, _level) \
({ LOCK_DOMAIN(_level, (_obj)->lock); &(_obj)->priv; })
#define LOBJ_UNLOCK(_obj, _level) \
UNLOCK_DOMAIN(_level, (_obj)->lock)
/*
* These macros can be used to define specific macros for given class.
*
* #define FOO_LOCK_SIMPLE(foo) LOBJ_LOCK_SIMPLE(foo, bar)
* #define FOO_UNLOCK(foo) LOBJ_UNLOCK(foo, bar)
*
* Then these can be used like this:
*
* void foo_frobnicate(foo *f)
* {
* // Unlocked context
* ...
* struct foo_private *fp = FOO_LOCK(f);
* // Locked context
* ...
* FOO_UNLOCK(f);
* // Unlocked context
* ...
* }
*
* These simple calls have two major drawbacks. First, if you return
* from locked context, you don't unlock, which may lock you dead.
* And second, the foo_private pointer is still syntactically valid
* even after unlocking.
*
* To fight this, we need more magic and the switch should stay in that
* position.
*
* First, we need an auxiliary _function_ for unlocking. This function
* is intended to be called in a local variable cleanup context.
*/
#define LOBJ_UNLOCK_CLEANUP_NAME(_stem) _lobj__##_stem##_unlock_cleanup
#define LOBJ_UNLOCK_CLEANUP(_stem, _level) \
static inline void LOBJ_UNLOCK_CLEANUP_NAME(_stem)(struct _stem##_private **obj) { \
if (!*obj || ((*obj)->locked_at != obj)) return; \
(*obj)->locked_at = NULL; \
UNLOCK_DOMAIN(_level, (*obj)->lock); \
}
#define LOBJ_LOCK(_obj, _pobj, _stem, _level) \
CLEANUP(LOBJ_UNLOCK_CLEANUP_NAME(_stem)) struct _stem##_private *_pobj = LOBJ_LOCK_SIMPLE(_obj, _level)
/*
* And now the usage of these macros. You first need to declare the auxiliary
* cleanup function.
*
* LOBJ_UNLOCK_CLEANUP(foo, bar);
*
* And then declare the lock-local macro:
*
* #define FOO_LOCK(foo, fpp) LOBJ_LOCK(foo, fpp, foo, bar)
*
* This construction then allows you to lock much more safely:
*
* void foo_frobnicate_safer(foo *f)
* {
* // Unlocked context
* ...
* do {
* FOO_LOCK(foo, fpp);
* // Locked context, fpp is valid here
*
* if (something) return; // This implicitly unlocks
* if (whatever) break; // This unlocks too
*
* // Finishing context with no unlock at all
* } while (0);
*
* // Here is fpp invalid and the object is back unlocked.
* ...
* }
*
*/
#endif #endif