0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-11-17 08:38:42 +00:00

Temporary integrated OSPF commit.

This commit is contained in:
Ondrej Zajicek 2014-07-18 18:24:12 +02:00
parent 70945cb645
commit a7a7372aa7
15 changed files with 779 additions and 691 deletions

View File

@ -22,10 +22,11 @@
* or some other non-shareable resource, it asks the core to lock it and it doesn't
* use the resource until it's notified that it has acquired the lock.
*
* Object locks are represented by &object_lock structures which are in turn a kind of
* resource. Lockable resources are uniquely determined by resource type
* Object locks are represented by &object_lock structures which are in turn a
* kind of resource. Lockable resources are uniquely determined by resource type
* (%OBJLOCK_UDP for a UDP port etc.), IP address (usually a broadcast or
* multicast address the port is bound to), port number and interface.
* multicast address the port is bound to), port number, interface and optional
* instance ID.
*/
#undef LOCAL_DEBUG
@ -45,6 +46,7 @@ olock_same(struct object_lock *x, struct object_lock *y)
x->type == y->type &&
x->iface == y->iface &&
x->port == y->port &&
x->inst == y->inst &&
ipa_equal(x->addr, y->addr);
}
@ -88,7 +90,7 @@ olock_dump(resource *r)
struct object_lock *l = (struct object_lock *) r;
static char *olock_states[] = { "free", "locked", "waiting", "event" };
debug("(%d:%s:%I:%d) [%s]\n", l->type, (l->iface ? l->iface->name : "?"), l->addr, l->port, olock_states[l->state]);
debug("(%d:%s:%I:%d:%d) [%s]\n", l->type, (l->iface ? l->iface->name : "?"), l->addr, l->port, l->inst, olock_states[l->state]);
if (!EMPTY_LIST(l->waiters))
debug(" [wanted]\n");
}

View File

@ -26,9 +26,10 @@
struct object_lock {
resource r;
ip_addr addr; /* Identification of a object: IP address */
unsigned int type; /* ... object type (OBJLOCK_xxx) */
uint type; /* ... object type (OBJLOCK_xxx) */
uint port; /* ... port number */
uint inst; /* ... instance ID */
struct iface *iface; /* ... interface */
unsigned int port; /* ... port number */
void (*hook)(struct object_lock *); /* Called when the lock succeeds */
void *data; /* User data */
/* ... internal to lock manager, don't touch ... */

View File

@ -200,15 +200,11 @@ ospf_do_send_dbdes(struct ospf_proto *p, struct ospf_neighbor *n)
* of the buffer.
*/
void
ospf_send_dbdes(struct ospf_neighbor *n, int next)
ospf_send_dbdes(struct ospf_proto *p, struct ospf_neighbor *n, int next)
{
struct ospf_iface *ifa = n->ifa;
struct ospf_area *oa = ifa->oa;
struct ospf_proto *p = oa->po;
/* RFC 2328 10.8 */
if (oa->rt == NULL)
if (n->ifa->oa->rt == NULL)
return;
switch (n->state)
@ -312,6 +308,7 @@ ospf_process_dbdes(struct ospf_proto *p, struct ospf_packet *pkt, struct ospf_ne
s_add_tail(&n->lsrql, SNODE req);
req->lsa = lsa;
req->lsa_body = LSA_BODY_DUMMY;
}
}
@ -394,7 +391,7 @@ ospf_receive_dbdes(struct ospf_packet *pkt, struct ospf_iface *ifa,
n->imms = rcv_imms;
OSPF_TRACE(D_PACKETS, "I'm slave to %I", n->ip);
ospf_neigh_sm(n, INM_NEGDONE);
ospf_send_dbdes(n, 1);
ospf_send_dbdes(p, n, 1);
break;
}
@ -426,7 +423,7 @@ ospf_receive_dbdes(struct ospf_packet *pkt, struct ospf_iface *ifa,
if (!(n->myimms & DBDES_MS))
{
/* Slave should retransmit dbdes packet */
ospf_send_dbdes(n, 0);
ospf_send_dbdes(p, n, 0);
}
return;
}
@ -472,7 +469,7 @@ ospf_receive_dbdes(struct ospf_packet *pkt, struct ospf_iface *ifa,
if (!(n->myimms & DBDES_M) && !(n->imms & DBDES_M))
ospf_neigh_sm(n, INM_EXDONE);
else
ospf_send_dbdes(n, 1);
ospf_send_dbdes(p, n, 1);
}
else
{
@ -489,7 +486,7 @@ ospf_receive_dbdes(struct ospf_packet *pkt, struct ospf_iface *ifa,
if (ospf_process_dbdes(p, pkt, n) < 0)
return;
ospf_send_dbdes(n, 1);
ospf_send_dbdes(p, n, 1);
}
break;
@ -504,7 +501,7 @@ ospf_receive_dbdes(struct ospf_packet *pkt, struct ospf_iface *ifa,
if (!(n->myimms & DBDES_MS))
{
/* Slave should retransmit dbdes packet */
ospf_send_dbdes(n, 0);
ospf_send_dbdes(p, n, 0);
}
return;
}

View File

@ -275,7 +275,7 @@ ospf_receive_hello(struct ospf_packet *pkt, struct ospf_iface *ifa,
/* Check consistency of existing neighbor entry */
if (n)
{
unsigned t = ifa->type;
uint t = ifa->type;
if (ospf_is_v2(p) && ((t == OSPF_IT_BCAST) || (t == OSPF_IT_NBMA) || (t == OSPF_IT_PTMP)))
{
/* Neighbor identified by IP address; Router ID may change */

View File

@ -620,18 +620,11 @@ ospf_iface_new(struct ospf_area *oa, struct ifa *addr, struct ospf_iface_patt *i
add_tail(&oa->po->iface_list, NODE ifa);
/*
* In some cases we allow more ospf_ifaces on one physical iface.
* In OSPFv2, if they use different IP address prefix.
* In OSPFv3, if they use different instance_id.
* Therefore, we store such info to lock->addr field.
*/
// XXXX review
struct object_lock *lock = olock_new(pool);
lock->addr = ospf_is_v2(p) ? ifa->addr->prefix : _MI6(0,0,0,ifa->instance_id);
lock->addr = ospf_is_v2(p) ? ifa->addr->prefix : IPA_NONE;
lock->type = OBJLOCK_IP;
lock->port = OSPF_PROTO;
lock->inst = ifa->instance_id;
lock->iface = iface;
lock->data = ifa;
lock->hook = ospf_iface_add;
@ -997,7 +990,7 @@ ospf_walk_matching_iface_patts(struct ospf_proto *p, struct ospf_mip_walk *s)
BIT32_SET(s->ignore, id);
/* If we already found it in previous areas, ignore it and add warning */
if (!BIT32_TEST(s->active, id))
if (BIT32_TEST(s->active, id))
{ s->warn = 1; continue; }
BIT32_SET(s->active, id);
@ -1046,7 +1039,7 @@ ospf_ifa_notify2(struct proto *P, uint flags, struct ifa *a)
{
struct ospf_mip_walk s = { .iface = a->iface, .a = a };
while (ospf_walk_matching_iface_patts(p, &s))
ospf_iface_new(s.oa, s.a, s.ip);
ospf_iface_new(s.oa, a, s.ip);
}
if (flags & IF_CHANGE_DOWN)
@ -1078,7 +1071,7 @@ ospf_ifa_notify3(struct proto *P, uint flags, struct ifa *a)
{
struct ospf_mip_walk s = { .iface = a->iface };
while (ospf_walk_matching_iface_patts(p, &s))
ospf_iface_new(s.oa, s.a, s.ip);
ospf_iface_new(s.oa, a, s.ip);
}
if (flags & IF_CHANGE_DOWN)

View File

@ -79,10 +79,9 @@ ospf_reset_lsack_queue(struct ospf_neighbor *n)
}
static inline void
ospf_send_lsack(struct ospf_neighbor *n, int queue)
ospf_send_lsack_(struct ospf_proto *p, struct ospf_neighbor *n, int queue)
{
struct ospf_iface *ifa = n->ifa;
struct ospf_proto *p = ifa->oa->po;
struct ospf_lsa_header *lsas;
struct ospf_packet *pkt;
struct lsa_node *no;
@ -121,10 +120,10 @@ ospf_send_lsack(struct ospf_neighbor *n, int queue)
}
void
ospf_lsack_send(struct ospf_neighbor *n, int queue)
ospf_send_lsack(struct ospf_proto *p, struct ospf_neighbor *n, int queue)
{
while (!EMPTY_LIST(n->ackl[queue]))
ospf_send_lsack(n, queue);
ospf_send_lsack_(p, n, queue);
}
void
@ -160,9 +159,6 @@ ospf_receive_lsack(struct ospf_packet *pkt, struct ospf_iface *ifa,
if (lsa_comp(&lsa, &ret->lsa) != CMP_SAME)
{
if ((lsa.sn == LSA_MAXSEQNO) && (lsa.age == LSA_MAXAGE))
continue;
OSPF_TRACE(D_PACKETS, "Strange LSACK from %I", n->ip);
OSPF_TRACE(D_PACKETS, "Type: %04x, Id: %R, Rt: %R",
lsa_type, lsa.id, lsa.rt);

View File

@ -71,7 +71,8 @@ ospf_send_lsreq(struct ospf_proto *p, struct ospf_neighbor *n)
ospf_pkt_fill_hdr(ifa, pkt, LSREQ_P);
ospf_lsreq_body(p, pkt, &lsrs, &lsr_max);
// for (i = 0; i < lsr_max; i++)
/* We send smaller LSREQ to prevent multiple LSACKs as answer */
lsr_max = lsr_max / 4;
i = 0;
WALK_SLIST(en, n->lsrql)

View File

@ -115,7 +115,8 @@ ospf_lsa_lsrt_up(struct top_hash_entry *en, struct ospf_neighbor *n)
s_add_tail(&n->lsrtl, SNODE ret);
}
memcpy(&ret->lsa, &en->lsa, sizeof(struct ospf_lsa_header));
ret->lsa = en->lsa;
ret->lsa_body = LSA_BODY_DUMMY;
}
static inline int
@ -134,25 +135,37 @@ ospf_lsa_lsrt_down(struct top_hash_entry *en, struct ospf_neighbor *n)
return 0;
}
void
ospf_add_flushed_to_lsrt(struct ospf_proto *p, struct ospf_neighbor *n)
{
struct top_hash_entry *en;
static void ospf_lsupd_flood_ifa(struct ospf_proto *p, struct ospf_iface *ifa, struct top_hash_entry *en);
WALK_SLIST(en, p->lsal)
if ((en->lsa.age == LSA_MAXAGE) && (en->lsa_body != NULL) &&
lsa_flooding_allowed(en->lsa_type, en->domain, n->ifa))
ospf_lsa_lsrt_up(en, n);
}
static void ospf_send_lsupd_to_ifa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_iface *ifa);
/**
* ospf_lsupd_flood - send received or generated LSA to the neighbors
* @p: OSPF protocol
* ospf_flood_lsa - send LSA to the neighbors
* @p: OSPF protocol instance
* @en: LSA entry
* @from: neighbor than sent this LSA (or NULL if LSA is local)
*
* return value - was the LSA flooded back?
*/
int
ospf_lsupd_flood(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_neighbor *from)
ospf_flood_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_neighbor *from)
{
struct ospf_iface *ifa;
struct ospf_neighbor *n;
/* RFC 2328 13.3 */
int back = 0;
WALK_LIST(ifa, p->iface_list)
{
@ -185,6 +198,8 @@ ospf_lsupd_flood(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_ne
{
s_rem_node(SNODE req);
ospf_hash_delete(n->lsrqh, req);
n->want_lsreq = 1;
if ((EMPTY_SLIST(n->lsrql)) && (n->state == NEIGHBOR_LOADING))
ospf_neigh_sm(n, INM_LOADDONE);
}
@ -227,7 +242,7 @@ ospf_lsupd_flood(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_ne
}
/* 13.3 (5) - finally flood the packet */
ospf_lsupd_flood_ifa(p, ifa, en);
ospf_send_lsupd_to_ifa(p, en, ifa);
}
return back;
@ -288,7 +303,7 @@ ospf_prepare_lsupd(struct ospf_proto *p, struct ospf_iface *ifa,
static void
ospf_lsupd_flood_ifa(struct ospf_proto *p, struct ospf_iface *ifa, struct top_hash_entry *en)
ospf_send_lsupd_to_ifa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_iface *ifa)
{
uint c = ospf_prepare_lsupd(p, ifa, &en, 1);
@ -384,7 +399,8 @@ ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa,
/* RFC 2328 13. */
int sendreq = 1; /* XXXX: review sendreq */
int skip_lsreq = 0;
n->want_lsreq = 0;
uint plen = ntohs(pkt->length);
if (plen < (ospf_lsupd_hdrlen(p) + sizeof(struct ospf_lsa_header)))
@ -436,7 +452,7 @@ ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa,
u16 chsum = lsa_n->checksum;
if (chsum != lsasum_check(lsa_n, NULL))
{
log(L_WARN "%s: Received LSA from %I with bad checskum: %x %x",
log(L_WARN "%s: Received LSA from %I with bad checksum: %x %x",
p->p.name, n->ip, chsum, lsa_n->checksum);
continue;
}
@ -501,7 +517,7 @@ ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa,
if (en && ((now - en->inst_time) < MINLSARRIVAL))
{
OSPF_TRACE(D_EVENTS, "Skipping LSA received in less that MinLSArrival");
sendreq = 0;
skip_lsreq = 1;
continue;
}
@ -514,7 +530,6 @@ ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa,
{
log(L_WARN "%s: Received invalid LSA from %I", p->p.name, n->ip);
mb_free(body);
sendreq = 0;
continue;
}
@ -528,13 +543,19 @@ ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa,
}
/* 13. (5c) - remove old LSA from all retransmission lists */
/* Must be done before (5b), otherwise it also removes the new entries from (5b) */
/*
* We only need to remove it from the retransmission list of the neighbor
* that send us the new LSA. The old LSA is automatically replaced in
* retransmission lists by the new LSA.
*/
if (en)
ospf_lsa_lsrt_down(en, n);
#if 0
/*
{
* Old code for removing LSA from all retransmission lists. Must be done
* before (5b), otherwise it also removes the new entries from (5b).
*/
struct ospf_iface *ifi;
struct ospf_neighbor *ni;
@ -542,8 +563,7 @@ ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa,
WALK_LIST(ni, ifi->neigh_list)
if (ni->state > NEIGHBOR_EXSTART)
ospf_lsa_lsrt_down(en, ni);
}
*/
#endif
/* 13. (5d) - install new LSA into database */
en = ospf_install_lsa(p, &lsa, lsa_type, lsa_domain, body);
@ -553,7 +573,7 @@ ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa,
ospf_notify_net_lsa(ifa);
/* 13. (5b) - flood new LSA */
int flood_back = ospf_lsupd_flood(p, en, n);
int flood_back = ospf_flood_lsa(p, en, n);
/* 13.5. - schedule ACKs (tbl 19, cases 1+2) */
if (! flood_back)
@ -582,7 +602,7 @@ ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa,
else
ospf_enqueue_lsack(n, lsa_n, ACKL_DIRECT);
sendreq = 0;
skip_lsreq = 1;
continue;
}
@ -598,11 +618,17 @@ ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa,
}
}
/* Send direct LSAs */
ospf_lsack_send(n, ACKL_DIRECT);
/* Send direct LSACKs */
ospf_send_lsack(p, n, ACKL_DIRECT);
/* If loading, ask for another part of neighbor's database */
if (sendreq && (n->state == NEIGHBOR_LOADING))
/*
* In loading state, we should ask for another batch of LSAs. This is only
* vaguely mentioned in RFC 2328. We send a new LSREQ only if the current
* LSUPD actually removed some entries from LSA request list (want_lsreq) and
* did not contain duplicate or early LSAs (skip_lsreq). The first condition
* prevents endless floods, the second condition helps with flow control.
*/
if ((n->state == NEIGHBOR_LOADING) && n->want_lsreq && !skip_lsreq)
ospf_send_lsreq(p, n);
}

View File

@ -33,13 +33,26 @@ static void rxmt_timer_hook(timer * timer);
static void ackd_timer_hook(timer * t);
static void
init_lists(struct ospf_neighbor *n)
init_lists(struct ospf_proto *p, struct ospf_neighbor *n)
{
s_init_list(&(n->lsrql));
n->lsrqh = ospf_top_new(n->pool);
n->lsrqh = ospf_top_new(p, n->pool);
s_init_list(&(n->lsrtl));
n->lsrth = ospf_top_new(n->pool);
n->lsrth = ospf_top_new(p, n->pool);
}
static void
release_lsrtl(struct ospf_proto *p, struct ospf_neighbor *n)
{
struct top_hash_entry *ret, *en;
WALK_SLIST(ret, n->lsrtl)
{
en = ospf_hash_find_entry(p->gr, ret);
if (en)
en->ret_count--;
}
}
/* Resets LSA request and retransmit lists.
@ -47,11 +60,12 @@ init_lists(struct ospf_neighbor *n)
* it is reset during entering EXCHANGE state.
*/
static void
reset_lists(struct ospf_neighbor *n)
reset_lists(struct ospf_proto *p, struct ospf_neighbor *n)
{
release_lsrtl(p,n);
ospf_top_free(n->lsrqh);
ospf_top_free(n->lsrth);
init_lists(n);
init_lists(p, n);
}
struct ospf_neighbor *
@ -68,7 +82,7 @@ ospf_neighbor_new(struct ospf_iface *ifa)
n->csn = 0;
n->state = NEIGHBOR_DOWN;
init_lists(n);
init_lists(p, n);
s_init(&(n->dbsi), &(p->lsal));
n->inactim = tm_new(pool);
@ -360,6 +374,10 @@ ospf_neigh_sm(struct ospf_neighbor *n, int event)
s_get(&(n->dbsi));
s_init(&(n->dbsi), &p->lsal);
/* Add MaxAge LSA entries to retransmission list */
ospf_add_flushed_to_lsrt(p, n);
/* FIXME: Why is this here ? */
ospf_reset_lsack_queue(n);
}
else
@ -388,7 +406,7 @@ ospf_neigh_sm(struct ospf_neighbor *n, int event)
if (n->state >= NEIGHBOR_EXSTART)
if (!can_do_adj(n))
{
reset_lists(n);
reset_lists(p,n);
neigh_chstate(n, NEIGHBOR_2WAY);
}
break;
@ -399,7 +417,7 @@ ospf_neigh_sm(struct ospf_neighbor *n, int event)
case INM_BADLSREQ:
if (n->state >= NEIGHBOR_EXCHANGE)
{
reset_lists(n);
reset_lists(p, n);
neigh_chstate(n, NEIGHBOR_EXSTART);
}
break;
@ -407,12 +425,12 @@ ospf_neigh_sm(struct ospf_neighbor *n, int event)
case INM_KILLNBR:
case INM_LLDOWN:
case INM_INACTTIM:
reset_lists(n);
reset_lists(p, n);
neigh_chstate(n, NEIGHBOR_DOWN);
break;
case INM_1WAYREC:
reset_lists(n);
reset_lists(p, n);
neigh_chstate(n, NEIGHBOR_INIT);
break;
@ -552,8 +570,10 @@ ospf_neigh_remove(struct ospf_neighbor *n)
nn->found = 0;
}
s_get(&(n->dbsi));
neigh_chstate(n, NEIGHBOR_DOWN);
s_get(&(n->dbsi));
release_lsrtl(p, n);
rem_node(NODE n);
rfree(n->pool);
OSPF_TRACE(D_EVENTS, "Deleting neigbor %R", n->rid);
@ -620,9 +640,9 @@ ospf_sh_neigh_info(struct ospf_neighbor *n)
}
static void
rxmt_timer_hook(timer * timer)
rxmt_timer_hook(timer *t)
{
struct ospf_neighbor *n = (struct ospf_neighbor *) timer->data;
struct ospf_neighbor *n = t->data;
struct ospf_proto *p = n->ifa->oa->po;
DBG("%s: RXMT timer fired on interface %s for neigh %I\n",
@ -631,12 +651,12 @@ rxmt_timer_hook(timer * timer)
switch (n->state)
{
case NEIGHBOR_EXSTART:
ospf_send_dbdes(n, 1);
ospf_send_dbdes(p, n, 1);
return;
case NEIGHBOR_EXCHANGE:
if (n->myimms & DBDES_MS)
ospf_send_dbdes(n, 0);
ospf_send_dbdes(p, n, 0);
case NEIGHBOR_LOADING:
ospf_send_lsreq(p, n);
return;
@ -656,5 +676,10 @@ static void
ackd_timer_hook(timer *t)
{
struct ospf_neighbor *n = t->data;
ospf_lsack_send(n, ACKL_DELAY);
struct ospf_proto *p = n->ifa->oa->po;
DBG("%s: ACKD timer fired on interface %s for neigh %I\n",
p->p.name, n->ifa->ifname, n->ip);
ospf_send_lsack(p, n, ACKL_DELAY);
}

View File

@ -11,93 +11,81 @@
/**
* DOC: Open Shortest Path First (OSPF)
*
* The OSPF protocol is quite complicated and its complex implemenation is
* split to many files. In |ospf.c|, you will find mainly the interface
* for communication with the core (e.g., reconfiguration hooks, shutdown
* and initialisation and so on). In |packet.c|, you will find various
* functions for sending and receiving generic OSPF packets. There are
* also routines for authentication and checksumming. File |iface.c| contains
* the interface state machine and functions for allocation and deallocation of OSPF's
* interface data structures. Source |neighbor.c| includes the neighbor state
* machine and functions for election of Designated Router and Backup
* Designated router. In |hello.c|, there are routines for sending
* and receiving of hello packets as well as functions for maintaining
* wait times and the inactivity timer. Files |lsreq.c|, |lsack.c|, |dbdes.c|
* contain functions for sending and receiving of link-state requests,
* link-state acknowledgements and database descriptions respectively.
* In |lsupd.c|, there are functions for sending and receiving
* of link-state updates and also the flooding algorithm. Source |topology.c| is
* a place where routines for searching LSAs in the link-state database,
* adding and deleting them reside, there also are functions for originating
* of various types of LSAs (router LSA, net LSA, external LSA). File |rt.c|
* contains routines for calculating the routing table. |lsalib.c| is a set
* of various functions for working with the LSAs (endianity conversions,
* calculation of checksum etc.).
* The OSPF protocol is quite complicated and its complex implemenation is split
* to many files. In |ospf.c|, you will find mainly the interface for
* communication with the core (e.g., reconfiguration hooks, shutdown and
* initialisation and so on). File |iface.c| contains the interface state
* machine and functions for allocation and deallocation of OSPF's interface
* data structures. Source |neighbor.c| includes the neighbor state machine and
* functions for election of Designated Router and Backup Designated router. In
* |packet.c|, you will find various functions for sending and receiving generic
* OSPF packets. There are also routines for authentication and checksumming.
* In |hello.c|, there are routines for sending and receiving of hello packets
* as well as functions for maintaining wait times and the inactivity timer.
* Files |lsreq.c|, |lsack.c|, |dbdes.c| contain functions for sending and
* receiving of link-state requests, link-state acknowledgements and database
* descriptions respectively. In |lsupd.c|, there are functions for sending and
* receiving of link-state updates and also the flooding algorithm. Source
* |topology.c| is a place where routines for searching LSAs in the link-state
* database, adding and deleting them reside, there also are functions for
* originating of various types of LSAs (router LSA, net LSA, external LSA).
* File |rt.c| contains routines for calculating the routing table. |lsalib.c|
* is a set of various functions for working with the LSAs (endianity
* conversions, calculation of checksum etc.).
*
* One instance of the protocol is able to hold LSA databases for
* multiple OSPF areas, to exchange routing information between
* multiple neighbors and to calculate the routing tables. The core
* structure is &ospf_proto to which multiple &ospf_area and
* &ospf_iface structures are connected. &ospf_area is also connected to
* &top_hash_graph which is a dynamic hashing structure that
* describes the link-state database. It allows fast search, addition
* and deletion. Each LSA is kept in two pieces: header and body. Both of them are
* One instance of the protocol is able to hold LSA databases for multiple OSPF
* areas, to exchange routing information between multiple neighbors and to
* calculate the routing tables. The core structure is &ospf_proto to which
* multiple &ospf_area and &ospf_iface structures are connected. &ospf_proto is
* also connected to &top_hash_graph which is a dynamic hashing structure that
* describes the link-state database. It allows fast search, addition and
* deletion. Each LSA is kept in two pieces: header and body. Both of them are
* kept in the endianity of the CPU.
*
* In OSPFv2 specification, it is implied that there is one IP prefix
* for each physical network/interface (unless it is an ptp link). But
* in modern systems, there might be more independent IP prefixes
* associated with an interface. To handle this situation, we have
* one &ospf_iface for each active IP prefix (instead for each active
* iface); This behaves like virtual interface for the purpose of OSPF.
* If we receive packet, we associate it with a proper virtual interface
* mainly according to its source address.
* In OSPFv2 specification, it is implied that there is one IP prefix for each
* physical network/interface (unless it is an ptp link). But in modern systems,
* there might be more independent IP prefixes associated with an interface. To
* handle this situation, we have one &ospf_iface for each active IP prefix
* (instead for each active iface); This behaves like virtual interface for the
* purpose of OSPF. If we receive packet, we associate it with a proper virtual
* interface mainly according to its source address.
*
* OSPF keeps one socket per &ospf_iface. This allows us (compared to
* one socket approach) to evade problems with a limit of multicast
* groups per socket and with sending multicast packets to appropriate
* interface in a portable way. The socket is associated with
* underlying physical iface and should not receive packets received
* on other ifaces (unfortunately, this is not true on
* BSD). Generally, one packet can be received by more sockets (for
* example, if there are more &ospf_iface on one physical iface),
* therefore we explicitly filter received packets according to
* src/dst IP address and received iface.
* OSPF keeps one socket per &ospf_iface. This allows us (compared to one socket
* approach) to evade problems with a limit of multicast groups per socket and
* with sending multicast packets to appropriate interface in a portable way.
* The socket is associated with underlying physical iface and should not
* receive packets received on other ifaces (unfortunately, this is not true on
* BSD). Generally, one packet can be received by more sockets (for example, if
* there are more &ospf_iface on one physical iface), therefore we explicitly
* filter received packets according to src/dst IP address and received iface.
*
* Vlinks are implemented using particularly degenerate form of
* &ospf_iface, which has several exceptions: it does not have its
* iface or socket (it copies these from 'parent' &ospf_iface) and it
* is present in iface list even when down (it is not freed in
* ospf_iface_down()).
* Vlinks are implemented using particularly degenerate form of &ospf_iface,
* which has several exceptions: it does not have its iface or socket (it copies
* these from 'parent' &ospf_iface) and it is present in iface list even when
* down (it is not freed in ospf_iface_down()).
*
* The heart beat of ospf is ospf_disp(). It is called at regular intervals
* (&ospf_proto->tick). It is responsible for aging and flushing of LSAs in
* the database, for routing table calculaction and it call area_disp() of every
* ospf_area.
* (&ospf_proto->tick). It is responsible for aging and flushing of LSAs in the
* database, updating topology information in LSAs and for routing table
* calculation.
*
* The function area_disp() is
* responsible for late originating of router LSA and network LSA
* and for cleanup before routing table calculation process in
* the area.
* To every &ospf_iface, we connect one or more
* &ospf_neighbor's -- a structure containing many timers and queues
* for building adjacency and for exchange of routing messages.
* To every &ospf_iface, we connect one or more &ospf_neighbor's -- a structure
* containing many timers and queues for building adjacency and for exchange of
* routing messages.
*
* BIRD's OSPF implementation respects RFC2328 in every detail, but
* some of internal algorithms do differ. The RFC recommends making a snapshot
* of the link-state database when a new adjacency is forming and sending
* the database description packets based on the information in this
* snapshot. The database can be quite large in some networks, so
* rather we walk through a &slist structure which allows us to
* continue even if the actual LSA we were working with is deleted. New
* LSAs are added at the tail of this &slist.
* BIRD's OSPF implementation respects RFC2328 in every detail, but some of
* internal algorithms do differ. The RFC recommends making a snapshot of the
* link-state database when a new adjacency is forming and sending the database
* description packets based on the information in this snapshot. The database
* can be quite large in some networks, so rather we walk through a &slist
* structure which allows us to continue even if the actual LSA we were working
* with is deleted. New LSAs are added at the tail of this &slist.
*
* We also don't keep a separate OSPF routing table, because the core
* helps us by being able to recognize when a route is updated
* to an identical one and it suppresses the update automatically.
* Due to this, we can flush all the routes we've recalculated and
* also those we've deleted to the core's routing table and the
* core will take care of the rest. This simplifies the process
* We also do not keep a separate OSPF routing table, because the core helps us
* by being able to recognize when a route is updated to an identical one and it
* suppresses the update automatically. Due to this, we can flush all the routes
* we have recalculated and also those we have deleted to the core's routing
* table and the core will take care of the rest. This simplifies the process
* and conserves memory.
*/
@ -145,7 +133,7 @@ add_area_nets(struct ospf_area *oa, struct ospf_area_config *ac)
}
static void
ospf_area_add(struct ospf_proto *p, struct ospf_area_config *ac, int reconf)
ospf_area_add(struct ospf_proto *p, struct ospf_area_config *ac)
{
struct ospf_area *oa;
@ -169,6 +157,8 @@ ospf_area_add(struct ospf_proto *p, struct ospf_area_config *ac, int reconf)
oa->options = ac->type;
else
oa->options = ac->type | OPT_V6 | (p->stub_router ? 0 : OPT_R);
ospf_notify_rt_lsa(oa);
}
static void
@ -252,11 +242,11 @@ ospf_start(struct proto *P)
init_list(&(p->area_list));
fib_init(&p->rtf, P->pool, sizeof(ort), 0, ospf_rt_initort);
p->areano = 0;
p->gr = ospf_top_new(P->pool);
p->gr = ospf_top_new(p, P->pool);
s_init_list(&(p->lsal));
WALK_LIST(ac, c->area_list)
ospf_area_add(p, ac, 0);
ospf_area_add(p, ac);
if (c->abr)
ospf_open_vlink_sk(p);
@ -382,7 +372,7 @@ ospf_build_attrs(ea_list * next, struct linpool *pool, u32 m1, u32 m2,
void
schedule_rtcalc(struct ospf_proto *p)
ospf_schedule_rtcalc(struct ospf_proto *p)
{
if (p->calcrt)
return;
@ -418,7 +408,7 @@ ospf_disp(timer * timer)
/* Originate or flush local topology LSAs */
ospf_update_topology(p);
/* Age LSA DB */
/* Process LSA DB */
ospf_update_lsadb(p);
/* Calculate routing table */
@ -429,7 +419,7 @@ ospf_disp(timer * timer)
/**
* ospf_import_control - accept or reject new route from nest's routing table
* @p: current instance of protocol
* @P: OSPF protocol instance
* @new: the new route
* @attrs: list of attributes
* @pool: pool for allocation of attributes
@ -475,7 +465,7 @@ ospf_store_tmp_attrs(struct rte *rt, struct ea_list *attrs)
/**
* ospf_shutdown - Finish of OSPF instance
* @p: current instance of protocol
* @P: OSPF protocol instance
*
* RFC does not define any action that should be taken before router
* shutdown. To make my neighbors react as fast as possible, I send
@ -619,7 +609,7 @@ ospf_area_reconfigure(struct ospf_area *oa, struct ospf_area_config *nac)
/**
* ospf_reconfigure - reconfiguration hook
* @p: current instance of protocol (with old configuration)
* @P: current instance of protocol (with old configuration)
* @c: new configuration requested by user
*
* This hook tries to be a little bit intelligent. Instance of OSPF
@ -669,7 +659,7 @@ ospf_reconfigure(struct proto *P, struct proto_config *c)
if (oa)
ospf_area_reconfigure(oa, nac);
else
ospf_area_add(p, nac, 1);
ospf_area_add(p, nac);
}
/* Add and update interfaces */
@ -697,7 +687,7 @@ ospf_reconfigure(struct proto *P, struct proto_config *c)
if (oa->marked)
ospf_area_remove(oa);
schedule_rtcalc(p);
ospf_schedule_rtcalc(p);
return 1;
}
@ -1009,7 +999,7 @@ show_lsa_router(struct ospf_proto *p, struct top_hash_entry *he, int verbose)
/* In OSPFv2, we try to find network-LSA to get prefix/pxlen */
struct top_hash_entry *net_he = ospf_hash_find_net2(p->gr, he->domain, rtl.id);
if (net_he)
if (net_he && (net_he->lsa.age < LSA_MAXAGE))
{
struct ospf_lsa_header *net_lsa = &(net_he->lsa);
struct ospf_lsa_net *net_ln = net_he->lsa_body;
@ -1367,8 +1357,8 @@ void
ospf_sh_lsadb(struct lsadb_show_data *ld)
{
struct ospf_proto *p = (struct ospf_proto *) proto_get_named(ld->name, &proto_ospf);
int num = p->gr->hash_entries;
unsigned int i, j;
uint num = p->gr->hash_entries;
uint i, j;
int last_dscope = -1;
u32 last_domain = 0;
u16 type_mask = ospf_is_v2(p) ? 0x00ff : 0xffff; /* see lsa_etype() */

View File

@ -102,7 +102,7 @@ do { if ((p->p.debug & D_PACKETS) || OSPF_FORCE_DEBUG) \
struct ospf_config
{
struct proto_config c;
unsigned tick;
uint tick;
byte ospf2;
byte rfc1583;
byte stub_router;
@ -110,16 +110,26 @@ struct ospf_config
byte abr;
byte asbr;
int ecmp;
list area_list; /* list of struct ospf_area_config */
list vlink_list; /* list of struct ospf_iface_patt */
list area_list; /* list of area configs (struct ospf_area_config) */
list vlink_list; /* list of configured vlinks (struct ospf_iface_patt) */
};
struct nbma_node
struct ospf_area_config
{
node n;
ip_addr ip;
byte eligible;
byte found;
u32 areaid;
u32 default_cost; /* Cost of default route for stub areas
(With possible LSA_EXT3_EBIT for NSSA areas) */
u8 type; /* Area type (standard, stub, NSSA), represented
by option flags (OPT_E, OPT_N) */
u8 summary; /* Import summaries to this stub/NSSA area, valid for ABR */
u8 default_nssa; /* Generate default NSSA route for NSSA+summary area */
u8 translator; /* Translator role, for NSSA ABR */
u32 transint; /* Translator stability interval */
list patt_list; /* List of iface configs (struct ospf_iface_patt) */
list net_list; /* List of aggregate networks for that area */
list enet_list; /* List of aggregate external (NSSA) networks */
list stubnet_list; /* List of stub networks added to Router LSA */
};
struct area_net_config
@ -148,65 +158,54 @@ struct ospf_stubnet_config
u8 summary;
};
struct ospf_area_config
struct nbma_node
{
node n;
u32 areaid;
u32 default_cost; /* Cost of default route for stub areas
(With possible LSA_EXT3_EBIT for NSSA areas) */
u8 type; /* Area type (standard, stub, NSSA), represented
by option flags (OPT_E, OPT_N) */
u8 summary; /* Import summaries to this stub/NSSA area, valid for ABR */
u8 default_nssa; /* Generate default NSSA route for NSSA+summary area */
u8 translator; /* Translator role, for NSSA ABR */
u32 transint; /* Translator stability interval */
list patt_list;
list net_list; /* List of aggregate networks for that area */
list enet_list; /* List of aggregate external (NSSA) networks */
list stubnet_list; /* List of stub networks added to Router LSA */
ip_addr ip;
byte eligible;
byte found;
};
struct ospf_iface_patt
{
struct iface_patt i;
u32 type;
u32 stub;
u32 cost;
u32 helloint;
u32 rxmtint;
u32 pollint;
u32 waitint;
u32 deadc;
u32 deadint;
u32 inftransdelay;
list nbma_list;
u32 priority;
u32 voa;
u32 vid;
int tx_tos;
int tx_priority;
u16 tx_length;
u16 rx_buffer;
/* Generic option flags */
#define OPT_V6 0x01 /* OSPFv3, LSA relevant for IPv6 routing calculation */
#define OPT_E 0x02 /* Related to AS-external LSAs */
#define OPT_MC 0x04 /* Related to MOSPF, not used and obsolete */
#define OPT_N 0x08 /* Related to NSSA */
#define OPT_P 0x08 /* OSPFv2, flags P and N share position, see NSSA RFC */
#define OPT_EA 0x10 /* OSPFv2, external attributes, not used and obsolete */
#define OPT_R 0x10 /* OSPFv3, originator is active router */
#define OPT_DC 0x20 /* Related to demand circuits, not used */
/* Router-LSA VEB flags are are stored together with links (OSPFv2) or options (OSPFv3) */
#define OPT_RT_B (0x01 << 24)
#define OPT_RT_E (0x02 << 24)
#define OPT_RT_V (0x04 << 24)
#define OPT_RT_NT (0x10 << 24)
/* Prefix flags, specific for OSPFv3 */
#define OPT_PX_NU 0x01
#define OPT_PX_LA 0x02
#define OPT_PX_P 0x08
#define OPT_PX_DN 0x10
/* OSPF interface types */
#define OSPF_IT_BCAST 0
#define OSPF_IT_NBMA 1
#define OSPF_IT_PTP 2
#define OSPF_IT_PTMP 3
#define OSPF_IT_VLINK 4
#define OSPF_IT_UNDEF 5
/* OSPF interface states */
#define OSPF_IS_DOWN 0 /* Not active */
#define OSPF_IS_LOOP 1 /* Iface with no link */
#define OSPF_IS_WAITING 2 /* Waiting for Wait timer */
#define OSPF_IS_PTP 3 /* PTP operational */
#define OSPF_IS_DROTHER 4 /* I'm on BCAST or NBMA and I'm not DR */
#define OSPF_IS_BACKUP 5 /* I'm BDR */
#define OSPF_IS_DR 6 /* I'm DR */
#define OSPF_RXBUF_MINSIZE 256 /* Minimal allowed size */
u8 instance_id;
u8 autype; /* Not really used in OSPFv3 */
#define OSPF_AUTH_NONE 0
#define OSPF_AUTH_SIMPLE 1
#define OSPF_AUTH_CRYPT 2
#define OSPF_AUTH_CRYPT_SIZE 16
u8 strictnbma;
u8 check_link;
u8 ecmp_weight;
u8 link_lsa_suppression;
u8 real_bcast; /* Not really used in OSPFv3 */
u8 ptp_netmask; /* bool + 2 for unspecified */
u8 ttl_security; /* bool + 2 for TX only */
u8 bfd;
u8 bsd_secondary;
list *passwords;
};
/* Default values for interface parameters */
#define COST_D 10
@ -220,6 +219,58 @@ struct ospf_area_config
/* Value of Wait timer - not found it in RFC * - using 4*HELLO */
struct ospf_proto
{
struct proto p;
timer *disp_timer; /* OSPF proto dispatcher */
uint tick;
struct top_graph *gr; /* LSA graph */
slist lsal; /* List of all LSA's */
int calcrt; /* Routing table calculation scheduled?
0=no, 1=normal, 2=forced reload */
list iface_list; /* List of OSPF interfaces (struct ospf_iface) */
list area_list; /* List of OSPF areas (struct ospf_area) */
int areano; /* Number of area I belong to */
int padj; /* Number of neighbors in Exchange or Loading state */
struct fib rtf; /* Routing table */
byte ospf2; /* OSPF v2 or v3 */
byte rfc1583; /* RFC1583 compatibility */
byte stub_router; /* Do not forward transit traffic */
byte merge_external; /* Should i merge external routes? */
byte asbr; /* May i originate any ext/NSSA lsa? */
byte ecmp; /* Maximal number of nexthops in ECMP route, or 0 */
struct ospf_area *backbone; /* If exists */
void *lsab; /* LSA buffer used when originating router LSAs */
int lsab_size, lsab_used;
linpool *nhpool; /* Linpool used for next hops computed in SPF */
sock *vlink_sk; /* IP socket used for vlink TX */
u32 router_id;
u32 last_vlink_id; /* Interface IDs for vlinks (starts at 0x80000000) */
};
struct ospf_area
{
node n;
u32 areaid;
struct ospf_area_config *ac; /* Related area config */
struct top_hash_entry *rt; /* My own router LSA */
struct top_hash_entry *pxr_lsa; /* Originated prefix LSA */
list cand; /* List of candidates for RT calc. */
struct fib net_fib; /* Networks to advertise or not */
struct fib enet_fib; /* External networks for NSSAs */
u32 options; /* Optional features */
u8 update_rt_lsa; /* Rt lsa origination scheduled? */
u8 trcap; /* Transit capability? */
u8 marked; /* Used in OSPF reconfigure */
u8 translate; /* Translator state (TRANS_*), for NSSA ABR */
timer *translator_timer; /* For NSSA translator switch */
struct ospf_proto *po;
struct fib rtr; /* Routing tables for routers */
};
struct ospf_iface
{
node n;
@ -231,7 +282,7 @@ struct ospf_iface
pool *pool;
sock *sk; /* IP socket */
list neigh_list; /* List of neigbours */
list neigh_list; /* List of neigbours (struct ospf_neighbor) */
u32 cost; /* Cost of iface */
u32 waitint; /* number of sec before changing state from wait */
u32 rxmtint; /* number of seconds between LSA retransmissions */
@ -295,6 +346,153 @@ struct ospf_iface
u8 bfd; /* Use BFD on iface */
};
struct ospf_neighbor
{
node n;
pool *pool;
struct ospf_iface *ifa;
u8 state;
timer *inactim; /* Inactivity timer */
u8 imms; /* I, M, Master/slave received */
u8 myimms; /* I, M Master/slave */
u32 dds; /* DD Sequence number being sent */
u32 ddr; /* last Dat Des packet received */
u32 rid; /* Router ID */
ip_addr ip; /* IP of it's interface */
u8 priority; /* Priority */
u8 adj; /* built adjacency? */
u8 want_lsreq; /* Set to 1 when lsrql was shortened during LSUPD */
u32 options; /* Options received */
/* Entries dr and bdr store IP addresses in OSPFv2 and router IDs in
OSPFv3, we use the same type to simplify handling */
u32 dr; /* Neigbour's idea of DR */
u32 bdr; /* Neigbour's idea of BDR */
u32 iface_id; /* ID of Neighbour's iface connected to common network */
/* Database summary list iterator, controls initial dbdes exchange.
* Advances in the LSA list as dbdes packets are sent.
*/
siterator dbsi; /* iterator of po->lsal */
/* Link state request list, controls initial LSA exchange.
* Entries added when received in dbdes packets, removed as sent in lsreq packets.
*/
slist lsrql; /* slist of struct top_hash_entry from n->lsrqh */
struct top_graph *lsrqh;
/* Link state retransmission list, controls LSA retransmission during flood.
* Entries added as sent in lsupd packets, removed when received in lsack packets.
* These entries hold ret_count in appropriate LSA entries.
*/
slist lsrtl; /* slist of struct top_hash_entry from n->lsrth */
struct top_graph *lsrth;
timer *rxmt_timer; /* RXMT timer */
list ackl[2];
#define ACKL_DIRECT 0
#define ACKL_DELAY 1
timer *ackd_timer; /* Delayed ack timer */
struct bfd_request *bfd_req; /* BFD request, if BFD is used */
void *ldd_buffer; /* Last database description packet */
u32 ldd_bsize; /* Buffer size for ldd_buffer */
u32 csn; /* Last received crypt seq number (for MD5) */
};
/* OSPF interface types */
#define OSPF_IT_BCAST 0
#define OSPF_IT_NBMA 1
#define OSPF_IT_PTP 2
#define OSPF_IT_PTMP 3
#define OSPF_IT_VLINK 4
#define OSPF_IT_UNDEF 5
/* OSPF interface states */
#define OSPF_IS_DOWN 0 /* Not active */
#define OSPF_IS_LOOP 1 /* Iface with no link */
#define OSPF_IS_WAITING 2 /* Waiting for Wait timer */
#define OSPF_IS_PTP 3 /* PTP operational */
#define OSPF_IS_DROTHER 4 /* I'm on BCAST or NBMA and I'm not DR */
#define OSPF_IS_BACKUP 5 /* I'm BDR */
#define OSPF_IS_DR 6 /* I'm DR */
/* Definitions for interface state machine */
#define ISM_UP 0 /* Interface Up */
#define ISM_WAITF 1 /* Wait timer fired */
#define ISM_BACKS 2 /* Backup seen */
#define ISM_NEICH 3 /* Neighbor change */
#define ISM_LOOP 4 /* Link down */
#define ISM_UNLOOP 5 /* Link up */
#define ISM_DOWN 6 /* Interface down */
/* OSPF neighbor states */
#define NEIGHBOR_DOWN 0
#define NEIGHBOR_ATTEMPT 1
#define NEIGHBOR_INIT 2
#define NEIGHBOR_2WAY 3
#define NEIGHBOR_EXSTART 4
#define NEIGHBOR_EXCHANGE 5
#define NEIGHBOR_LOADING 6
#define NEIGHBOR_FULL 7
/* Definitions for neighbor state machine */
#define INM_HELLOREC 0 /* Hello Received */
#define INM_START 1 /* Neighbor start - for NBMA */
#define INM_2WAYREC 2 /* 2-Way received */
#define INM_NEGDONE 3 /* Negotiation done */
#define INM_EXDONE 4 /* Exchange done */
#define INM_BADLSREQ 5 /* Bad LS Request */
#define INM_LOADDONE 6 /* Load done */
#define INM_ADJOK 7 /* AdjOK? */
#define INM_SEQMIS 8 /* Sequence number mismatch */
#define INM_1WAYREC 9 /* 1-Way */
#define INM_KILLNBR 10 /* Kill Neighbor */
#define INM_INACTTIM 11 /* Inactivity timer */
#define INM_LLDOWN 12 /* Line down */
#define TRANS_OFF 0
#define TRANS_ON 1
#define TRANS_WAIT 2 /* Waiting before the end of translation */
/* Generic option flags */
#define OPT_V6 0x01 /* OSPFv3, LSA relevant for IPv6 routing calculation */
#define OPT_E 0x02 /* Related to AS-external LSAs */
#define OPT_MC 0x04 /* Related to MOSPF, not used and obsolete */
#define OPT_N 0x08 /* Related to NSSA */
#define OPT_P 0x08 /* OSPFv2, flags P and N share position, see NSSA RFC */
#define OPT_EA 0x10 /* OSPFv2, external attributes, not used and obsolete */
#define OPT_R 0x10 /* OSPFv3, originator is active router */
#define OPT_DC 0x20 /* Related to demand circuits, not used */
/* Router-LSA VEB flags are are stored together with links (OSPFv2) or options (OSPFv3) */
#define OPT_RT_B (0x01 << 24)
#define OPT_RT_E (0x02 << 24)
#define OPT_RT_V (0x04 << 24)
#define OPT_RT_NT (0x10 << 24)
/* Prefix flags, specific for OSPFv3 */
#define OPT_PX_NU 0x01
#define OPT_PX_LA 0x02
#define OPT_PX_P 0x08
#define OPT_PX_DN 0x10
struct ospf_packet
{
u8 version;
u8 type;
u16 length;
u32 routerid;
u32 areaid;
u16 checksum;
u8 instance_id; /* See RFC 6549 */
u8 autype; /* Undefined for OSPFv3 */
};
struct ospf_md5
{
u16 zero;
@ -309,7 +507,6 @@ union ospf_auth
struct ospf_md5 md5;
};
/* Packet types */
#define HELLO_P 1 /* Hello */
#define DBDES_P 2 /* Database description */
@ -317,8 +514,6 @@ union ospf_auth
#define LSUPD_P 4 /* Link state update */
#define LSACK_P 5 /* Link state acknowledgement */
/* Area IDs */
#define BACKBONE 0
#define DBDES_I 4 /* Init bit */
#define DBDES_M 2 /* More bit */
@ -326,19 +521,6 @@ union ospf_auth
#define DBDES_IMMS (DBDES_I | DBDES_M | DBDES_MS)
struct ospf_packet
{
u8 version;
u8 type;
u16 length;
u32 routerid;
u32 areaid;
u16 checksum;
u8 instance_id; /* See RFC 6549 */
u8 autype; /* Undefined for OSPFv3 */
};
#define LSA_T_RT 0x2001
#define LSA_T_NET 0x2002
#define LSA_T_SUM_NET 0x2003
@ -530,7 +712,7 @@ struct ospf_lsa_prefix
};
static inline unsigned
static inline uint
lsa_net_count(struct ospf_lsa_header *lsa)
{
return (lsa->length - sizeof(struct ospf_lsa_header) - sizeof(struct ospf_lsa_net))
@ -558,6 +740,7 @@ lsa_get_ipv6_prefix(u32 *buf, ip_addr *addr, int *pxlen, u8 *pxopts, u16 *rest)
*addr = IPA_NONE;
#ifdef IPV6
if (pxl > 0)
_I0(*addr) = *buf++;
if (pxl > 32)
@ -570,6 +753,7 @@ lsa_get_ipv6_prefix(u32 *buf, ip_addr *addr, int *pxlen, u8 *pxopts, u16 *rest)
/* Clean up remaining bits */
if (pxl < 128)
addr->addr[pxl / 32] &= u32_mkmask(pxl % 32);
#endif
return buf;
}
@ -613,183 +797,6 @@ struct ospf_lsreq_header
};
struct ospf_neighbor
{
node n;
pool *pool;
struct ospf_iface *ifa;
u8 state;
#define NEIGHBOR_DOWN 0
#define NEIGHBOR_ATTEMPT 1
#define NEIGHBOR_INIT 2
#define NEIGHBOR_2WAY 3
#define NEIGHBOR_EXSTART 4
#define NEIGHBOR_EXCHANGE 5
#define NEIGHBOR_LOADING 6
#define NEIGHBOR_FULL 7
timer *inactim; /* Inactivity timer */
u8 imms; /* I, M, Master/slave received */
u8 myimms; /* I, M Master/slave */
u32 dds; /* DD Sequence number being sent */
u32 ddr; /* last Dat Des packet received */
u32 rid; /* Router ID */
ip_addr ip; /* IP of it's interface */
u8 priority; /* Priority */
u8 adj; /* built adjacency? */
u32 options; /* Options received */
/* Entries dr and bdr store IP addresses in OSPFv2 and router IDs in
OSPFv3, we use the same type to simplify handling */
u32 dr; /* Neigbour's idea of DR */
u32 bdr; /* Neigbour's idea of BDR */
u32 iface_id; /* ID of Neighbour's iface connected to common network */
/* Database summary list iterator, controls initial dbdes exchange.
* Advances in the LSA list as dbdes packets are sent.
*/
siterator dbsi; /* iterator of po->lsal */
/* Link state request list, controls initial LSA exchange.
* Entries added when received in dbdes packets, removed as sent in lsreq packets.
*/
slist lsrql; /* slist of struct top_hash_entry from n->lsrqh */
struct top_graph *lsrqh;
/* Link state retransmission list, controls LSA retransmission during flood.
* Entries added as sent in lsupd packets, removed when received in lsack packets.
*/
slist lsrtl; /* slist of struct top_hash_entry from n->lsrth */
struct top_graph *lsrth;
timer *rxmt_timer; /* RXMT timer */
list ackl[2];
#define ACKL_DIRECT 0
#define ACKL_DELAY 1
timer *ackd_timer; /* Delayed ack timer */
struct bfd_request *bfd_req; /* BFD request, if BFD is used */
void *ldd_buffer; /* Last database description packet */
u32 ldd_bsize; /* Buffer size for ldd_buffer */
u32 csn; /* Last received crypt seq number (for MD5) */
};
/* Definitions for interface state machine */
#define ISM_UP 0 /* Interface Up */
#define ISM_WAITF 1 /* Wait timer fired */
#define ISM_BACKS 2 /* Backup seen */
#define ISM_NEICH 3 /* Neighbor change */
#define ISM_LOOP 4 /* Link down */
#define ISM_UNLOOP 5 /* Link up */
#define ISM_DOWN 6 /* Interface down */
/* Definitions for neighbor state machine */
#define INM_HELLOREC 0 /* Hello Received */
#define INM_START 1 /* Neighbor start - for NBMA */
#define INM_2WAYREC 2 /* 2-Way received */
#define INM_NEGDONE 3 /* Negotiation done */
#define INM_EXDONE 4 /* Exchange done */
#define INM_BADLSREQ 5 /* Bad LS Request */
#define INM_LOADDONE 6 /* Load done */
#define INM_ADJOK 7 /* AdjOK? */
#define INM_SEQMIS 8 /* Sequence number mismatch */
#define INM_1WAYREC 9 /* 1-Way */
#define INM_KILLNBR 10 /* Kill Neighbor */
#define INM_INACTTIM 11 /* Inactivity timer */
#define INM_LLDOWN 12 /* Line down */
struct ospf_area
{
node n;
u32 areaid;
struct ospf_area_config *ac; /* Related area config */
struct top_hash_entry *rt; /* My own router LSA */
struct top_hash_entry *pxr_lsa; /* Originated prefix LSA */
list cand; /* List of candidates for RT calc. */
struct fib net_fib; /* Networks to advertise or not */
struct fib enet_fib; /* External networks for NSSAs */
u32 options; /* Optional features */
u8 update_rt_lsa; /* Rt lsa origination scheduled? */
u8 trcap; /* Transit capability? */
u8 marked; /* Used in OSPF reconfigure */
u8 translate; /* Translator state (TRANS_*), for NSSA ABR */
timer *translator_timer; /* For NSSA translator switch */
struct ospf_proto *po;
struct fib rtr; /* Routing tables for routers */
};
#define TRANS_OFF 0
#define TRANS_ON 1
#define TRANS_WAIT 2 /* Waiting before the end of translation */
struct ospf_proto
{
struct proto p;
timer *disp_timer; /* OSPF proto dispatcher */
unsigned tick;
struct top_graph *gr; /* LSA graph */
slist lsal; /* List of all LSA's */
int calcrt; /* Routing table calculation scheduled?
0=no, 1=normal, 2=forced reload */
list iface_list; /* Interfaces we really use */
list area_list;
int areano; /* Number of area I belong to */
int padj; /* Number of neighbors in Exchange or Loading state */
struct fib rtf; /* Routing table */
byte ospf2; /* OSPF v2 or v3 */
byte rfc1583; /* RFC1583 compatibility */
byte stub_router; /* Do not forward transit traffic */
byte merge_external; /* Should i merge external routes? */
byte asbr; /* May i originate any ext/NSSA lsa? */
byte ecmp; /* Maximal number of nexthops in ECMP route, or 0 */
struct ospf_area *backbone; /* If exists */
void *lsab; /* LSA buffer used when originating router LSAs */
int lsab_size, lsab_used;
linpool *nhpool; /* Linpool used for next hops computed in SPF */
sock *vlink_sk; /* IP socket used for vlink TX */
u32 router_id;
u32 last_vlink_id; /* Interface IDs for vlinks (starts at 0x80000000) */
};
struct ospf_iface_patt
{
struct iface_patt i;
u32 type;
u32 stub;
u32 cost;
u32 helloint;
u32 rxmtint;
u32 pollint;
u32 waitint;
u32 deadc;
u32 deadint;
u32 inftransdelay;
list nbma_list;
u32 priority;
u32 voa;
u32 vid;
int tx_tos;
int tx_priority;
u16 tx_length;
u16 rx_buffer;
#define OSPF_RXBUF_MINSIZE 256 /* Minimal allowed size */
u8 instance_id;
u8 autype; /* Not really used in OSPFv3 */
#define OSPF_AUTH_NONE 0
#define OSPF_AUTH_SIMPLE 1
#define OSPF_AUTH_CRYPT 2
#define OSPF_AUTH_CRYPT_SIZE 16
u8 strictnbma;
u8 check_link;
u8 ecmp_weight;
u8 link_lsa_suppression;
u8 real_bcast; /* Not really used in OSPFv3 */
u8 ptp_netmask; /* bool + 2 for unspecified */
u8 ttl_security; /* bool + 2 for TX only */
u8 bfd;
u8 bsd_secondary;
list *passwords;
};
#define SH_ROUTER_SELF 0xffffffff
@ -810,7 +817,7 @@ struct lsadb_show_data {
/* ospf.c */
void schedule_rtcalc(struct ospf_proto *p);
void ospf_schedule_rtcalc(struct ospf_proto *p);
static inline void ospf_notify_rt_lsa(struct ospf_area *oa)
{ oa->update_rt_lsa = 1; }
@ -822,12 +829,15 @@ static inline void ospf_notify_link_lsa(struct ospf_iface *ifa)
{ ifa->update_link_lsa = 1; }
#define ospf_is_v2(X) OSPF_IS_V2
#define ospf_is_v3(X) (!OSPF_IS_V2)
/*
static inline int ospf_is_v2(struct ospf_proto *p)
{ return p->ospf2; }
static inline int ospf_is_v3(struct ospf_proto *p)
{ return ! p->ospf2; }
*/
static inline int ospf_get_version(struct ospf_proto *p)
{ return ospf_is_v2(p) ? 2 : 3; }
@ -920,7 +930,7 @@ void ospf_send_hello(struct ospf_iface *ifa, int kind, struct ospf_neighbor *dir
void ospf_receive_hello(struct ospf_packet *pkt, struct ospf_iface *ifa, struct ospf_neighbor *n, ip_addr faddr);
/* dbdes.c */
void ospf_send_dbdes(struct ospf_neighbor *n, int next);
void ospf_send_dbdes(struct ospf_proto *p, struct ospf_neighbor *n, int next);
void ospf_receive_dbdes(struct ospf_packet *pkt, struct ospf_iface *ifa, struct ospf_neighbor *n);
/* lsreq.c */
@ -930,7 +940,8 @@ void ospf_receive_lsreq(struct ospf_packet *pkt, struct ospf_iface *ifa, struct
/* lsupd.c */
void ospf_dump_lsahdr(struct ospf_proto *p, struct ospf_lsa_header *lsa_n);
void ospf_dump_common(struct ospf_proto *p, struct ospf_packet *pkt);
int ospf_lsupd_flood(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_neighbor *from);
void ospf_add_flushed_to_lsrt(struct ospf_proto *p, struct ospf_neighbor *n);
int ospf_flood_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_neighbor *from);
int ospf_send_lsupd(struct ospf_proto *p, struct top_hash_entry **lsa_list, uint lsa_count, struct ospf_neighbor *n);
void ospf_rxmt_lsupd(struct ospf_proto *p, struct ospf_neighbor *n);
void ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa, struct ospf_neighbor *n);
@ -938,7 +949,7 @@ void ospf_receive_lsupd(struct ospf_packet *pkt, struct ospf_iface *ifa, struct
/* lsack.c */
void ospf_enqueue_lsack(struct ospf_neighbor *n, struct ospf_lsa_header *h_n, int queue);
void ospf_reset_lsack_queue(struct ospf_neighbor *n);
void ospf_lsack_send(struct ospf_neighbor *n, int queue);
void ospf_send_lsack(struct ospf_proto *p, struct ospf_neighbor *n, int queue);
void ospf_receive_lsack(struct ospf_packet *pkt, struct ospf_iface *ifa, struct ospf_neighbor *n);

View File

@ -557,7 +557,7 @@ spfa_process_rt(struct ospf_proto *p, struct ospf_area *oa, struct top_hash_entr
/* Errata 2078 to RFC 5340 4.8.1 - skip links from non-routing nodes */
if (ospf_is_v3(p) && (act != oa->rt) && !(rt->options & OPT_R))
break;
return;
/* Now process Rt links */
for (lsa_walk_rt_init(p, act, &rtl), i = 0; lsa_walk_rt(&rtl); i++)
@ -688,6 +688,8 @@ ospf_rt_spfa(struct ospf_area *oa)
if (oa->rt == NULL)
return;
if (oa->rt->lsa.age == LSA_MAXAGE)
return;
OSPF_TRACE(D_EVENTS, "Starting routing table calculation for area %R", oa->areaid);
@ -1087,8 +1089,7 @@ check_sum_net_lsa(struct ospf_proto *p, ort *nf)
struct area_net *anet = NULL;
struct ospf_area *anet_oa = NULL;
/* RT entry marked as area network */
if (nf->fn.flags & OSPF_RT_PERSISTENT)
if (nf->area_net)
{
/* It is a default route for stub areas, handled entirely in ospf_rt_abr() */
if (nf->fn.pxlen == 0)
@ -1162,8 +1163,7 @@ check_nssa_lsa(struct ospf_proto *p, ort *nf)
if (nf->external_rte)
return;
/* RT entry marked as area network */
if (nf->fn.flags & OSPF_RT_PERSISTENT)
if (nf->area_net)
{
/* Find that area network */
WALK_LIST(oa, p->area_list)
@ -1176,12 +1176,12 @@ check_nssa_lsa(struct ospf_proto *p, ort *nf)
/* RFC 3103 3.2 (3) - originate the aggregated address range */
if (anet && anet->active && !anet->hidden && oa->translate)
ospf_originate_ext_lsa(p, NULL, nf, LSA_RTCALC, anet->metric,
ospf_originate_ext_lsa(p, NULL, nf, LSA_M_RTCALC, anet->metric,
(anet->metric & LSA_EXT3_EBIT), IPA_NONE, anet->tag, 0);
/* RFC 3103 3.2 (2) - originate the same network */
else if (decide_nssa_lsa(p, nf, &rt))
ospf_originate_ext_lsa(p, NULL, nf, LSA_RTCALC, rt.metric, rt.ebit, rt.fwaddr, rt.tag, 0);
ospf_originate_ext_lsa(p, NULL, nf, LSA_M_RTCALC, rt.metric, rt.ebit, rt.fwaddr, rt.tag, 0);
}
/* RFC 2328 16.7. p2 - find new/lost vlink endpoints */
@ -1273,7 +1273,7 @@ ospf_rt_abr1(struct ospf_proto *p)
/* Get a RT entry and mark it to know that it is an area network */
ort *nfi = (ort *) fib_get(&p->rtf, &anet->fn.prefix, anet->fn.pxlen);
nfi->fn.flags |= OSPF_RT_PERSISTENT; /* mark persistent, to have stable UID */
nfi->area_net = 1;
/* 16.2. (3) */
if (nfi->n.type == RTS_OSPF_IA)
@ -1289,7 +1289,7 @@ ospf_rt_abr1(struct ospf_proto *p)
ip_addr addr = IPA_NONE;
default_nf = (ort *) fib_get(&p->rtf, &addr, 0);
default_nf->fn.flags |= OSPF_RT_PERSISTENT; /* keep persistent */
default_nf->area_net = 1;
struct ospf_area *oa;
WALK_LIST(oa, p->area_list)
@ -1309,7 +1309,7 @@ ospf_rt_abr1(struct ospf_proto *p)
*/
if (oa_is_nssa(oa) && oa->ac->default_nssa)
ospf_originate_ext_lsa(p, oa, default_nf, LSA_RTCALC, oa->ac->default_cost,
ospf_originate_ext_lsa(p, oa, default_nf, LSA_M_RTCALC, oa->ac->default_cost,
(oa->ac->default_cost & LSA_EXT3_EBIT), IPA_NONE, 0, 0);
/* RFC 2328 16.4. (3) - precompute preferred ASBR entries */
@ -1348,7 +1348,7 @@ translator_timer_hook(timer *timer)
return;
oa->translate = TRANS_OFF;
schedule_rtcalc(oa->po);
ospf_schedule_rtcalc(oa->po);
}
static void
@ -1431,7 +1431,7 @@ ospf_rt_abr2(struct ospf_proto *p)
/* Get a RT entry and mark it to know that it is an area network */
nf2 = (ort *) fib_get(&p->rtf, &anet->fn.prefix, anet->fn.pxlen);
nf2->fn.flags |= OSPF_RT_PERSISTENT; /* keep persistent */
nf2->area_net = 1;
}
u32 metric = (nf->n.type == RTS_OSPF_EXT1) ?
@ -1634,7 +1634,7 @@ ospf_rt_reset(struct ospf_proto *p)
FIB_WALK(&p->rtf, nftmp)
{
ri = (ort *) nftmp;
ri->fn.flags &= ~OSPF_RT_PERSISTENT;
ri->area_net = 0;
reset_ri(ri);
}
FIB_WALK_END;
@ -1647,8 +1647,8 @@ ospf_rt_reset(struct ospf_proto *p)
en->nhs = NULL;
en->lb = IPA_NONE;
if (en->rtcalc == LSA_RTCALC)
en->rtcalc = LSA_STALE;
if (en->mode == LSA_M_RTCALC)
en->mode = LSA_M_STALE;
}
WALK_LIST(oa, p->area_list)
@ -1683,14 +1683,9 @@ ospf_rt_reset(struct ospf_proto *p)
}
}
static void
ospf_flush_stale(struct ospf_proto *p)
{
}
/**
* ospf_rt_spf - calculate internal routes
* @p: OSPF protocol
* @p: OSPF protocol instance
*
* Calculation of internal paths in an area is described in 16.1 of RFC 2328.
* It's based on Dijkstra's shortest path tree algorithms.
@ -2064,8 +2059,8 @@ again1:
rte_update(&p->p, ne, NULL);
}
/* Remove unused rt entry. Entries with any flags are persistent. */
if (!nf->n.type && !nf->external_rte) // XXXX
/* Remove unused rt entry, some special entries are persistent */
if (!nf->n.type && !nf->external_rte && !nf->area_net)
{
FIB_ITERATE_PUT(&fit, nftmp);
fib_delete(fib, nftmp);
@ -2096,6 +2091,6 @@ again2:
/* Cleanup stale LSAs */
WALK_SLIST(en, p->lsal)
if (en->rtcalc == LSA_STALE)
if (en->mode == LSA_M_STALE)
ospf_flush_lsa(p, en);
}

View File

@ -2,9 +2,10 @@
* BIRD -- OSPF
*
* (c) 2000--2004 Ondrej Filip <feela@network.cz>
* (c) 2009--2014 Ondrej Zajicek <santiago@crfreenet.org>
* (c) 2009--2014 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*
*/
#ifndef _BIRD_OSPF_RT_H_
@ -28,12 +29,17 @@ typedef struct orta
#define ORTA_ASBR OPT_RT_E
#define ORTA_ABR OPT_RT_B
/*
* For ORT_NET routes, the field is almost unused with one
* exception: ORTA_PREF for external routes means that the route is
* preferred in AS external route selection according to 16.4.1. -
* it is intra-area path using non-backbone area. In other words,
* the forwarding address (or ASBR if forwarding address is zero) is
* intra-area (type == RTS_OSPF) and its area is not a backbone.
* For ORT_NET routes, there are just several flags for external routes:
*
* ORTA_PREF for external routes means that the route is preferred in AS
* external route selection according to 16.4.1. - it is intra-area path using
* non-backbone area. In other words, the forwarding address (or ASBR if
* forwarding address is zero) is intra-area (type == RTS_OSPF) and its area
* is not a backbone.
*
* ORTA_NSSA means that the entry represents an NSSA route, and ORTA_PROP
* means that the NSSA route has propagate-bit set. These flags are used in
* NSSA translation.
*/
#define ORTA_PREF 0x80000000
#define ORTA_NSSA 0x40000000
@ -51,41 +57,38 @@ typedef struct orta
}
orta;
/* Values for fn.flags in struct ort */
#define OSPF_RT_PERSISTENT 0x01
typedef struct ort
{
/*
* We use OSPF_RT_PERSISTENT to mark persistent rt entries, that are
* needed for summary LSAs that don't have 'proper' rt entry (area
* networks + default to stubs) to keep uid stable (used for LSA ID
* in OSPFv3 - see fibnode_to_lsaid()).
* Most OSPF routing table entries are for computed OSPF routes, these have
* defined n.type. There are also few other cases: entries for configured area
* networks (these have area_net field set) and entries for external routes
* exported to OSPF (these have external_rte field set). These entries are
* kept even if they do not contain 'proper' rt entry. That is needed to keep
* allocated stable UID numbers (fn.uid), which are used as LSA IDs in OSPFv3
* (see fibnode_to_lsaid()) for related LSAs (network summary LSAs in the
* first case, external or NSSA LSAs in the second case). Entries for external
* routes also have a second purpose - to prevent NSSA translation of received
* NSSA routes if regular external routes were already originated for the same
* network (see check_nssa_lsa()).
*
* We use ORT_RT_EXPORT and ORT_RT_NSSA to note whether the
* external/NSSA route was originated from the route export (in
* ospf_rt_notify()) or from the NSSA route translation (in
* check_nssa_lsa()).
*
* old_* values are here to represent the last route update. old_rta
* is cached (we keep reference), mainly for multipath nexthops.
* old_rta == NULL means route was not in the last update, in that
* case other old_* values are not valid.
* old_* values are here to represent the last route update. old_rta is cached
* (we keep reference), mainly for multipath nexthops. old_rta == NULL means
* route was not in the last update, in that case other old_* values are not
* valid.
*/
struct fib_node fn;
orta n;
u32 old_metric1, old_metric2, old_tag, old_rid;
rta *old_rta;
u8 external_rte;
u8 area_net;
}
ort;
static inline int rt_is_nssa(ort *nf)
{ return nf->n.options & ORTA_NSSA; }
#define EXT_EXPORT 1
#define EXT_NSSA 2
/*
* Invariants for structs top_hash_entry (nodes of LSA db)
@ -97,7 +100,7 @@ static inline int rt_is_nssa(ort *nf)
* - beware, nhs is not valid after SPF calculation
*
* Invariants for structs orta nodes of fib tables po->rtf, oa->rtr:
* - nodes may be invalid (fn.type == 0), in that case other invariants don't hold
* - nodes may be invalid (n.type == 0), in that case other invariants don't hold
* - n.metric1 may be at most a small multiple of LSINFINITY,
* therefore sums do not overflow
* - n.oa is always non-NULL

View File

@ -40,11 +40,13 @@ static inline void lsab_reset(struct ospf_proto *p);
* new routing table calculation is necessary. This is described in 13.2 of RFC
* 2328. This function is for received LSA only, locally originated LSAs are
* installed by ospf_originate_lsa().
*
* The LSA body in @body is expected to be mb_allocated by the caller and its
* ownership is transferred to the LSA entry structure.
*/
struct top_hash_entry *
ospf_install_lsa(struct ospf_proto *p, struct ospf_lsa_header *lsa, u32 type, u32 domain, void *body)
{
/* LSA can be temporary, but body must be mb_allocated. */
struct top_hash_entry *en;
int change = 0;
@ -61,8 +63,8 @@ ospf_install_lsa(struct ospf_proto *p, struct ospf_lsa_header *lsa, u32 type, u3
memcmp(en->lsa_body, body, lsa->length - sizeof(struct ospf_lsa_header)))
change = 1;
DBG("Inst lsa: Id: %R, Rt: %R, Type: %u, Age: %u, Sum: %u, Sn: 0x%x\n",
lsa->id, lsa->rt, lsa->type, lsa->age, lsa->checksum, lsa->sn);
if ((en->lsa.age == LSA_MAXAGE) && (lsa->age == LSA_MAXAGE))
change = 0;
mb_free(en->lsa_body);
en->lsa_body = body;
@ -70,16 +72,43 @@ ospf_install_lsa(struct ospf_proto *p, struct ospf_lsa_header *lsa, u32 type, u3
en->init_age = en->lsa.age;
en->inst_time = now;
/*
* We do not set en->mode. It is either default LSA_M_BASIC, or in a special
* case when en is local but flushed, there is postponed LSA, self-originated
* LSA is received and ospf_install_lsa() is called from ospf_advance_lse(),
* then we have en->mode from the postponed LSA origination.
*/
OSPF_TRACE(D_EVENTS, "Installing LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x, Age: %u",
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn, en->lsa.age);
if (change)
schedule_rtcalc(p);
ospf_schedule_rtcalc(p);
return en;
}
/**
* ospf_advance_lsa - handle received unexpected self-originated LSA
* @p: OSPF protocol instance
* @en: current LSA entry or NULL
* @lsa: new LSA header
* @type: type of LSA
* @domain: domain of LSA
* @body: pointer to LSA body
*
* This function handles received unexpected self-originated LSA (@lsa, @body)
* by either advancing sequence number of the local LSA instance (@en) and
* propagating it, or installing the received LSA and immediately flushing it
* (if there is no local LSA; i.e., @en is NULL or MaxAge).
*
* The LSA body in @body is expected to be mb_allocated by the caller and its
* ownership is transferred to the LSA entry structure or it is freed.
*/
void
ospf_advance_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_lsa_header *lsa, u32 type, u32 domain, void *body)
{
// OSPF_TRACE(D_EVENTS, "Reflooding new self-originated LSA with newer sequence number");
/* RFC 2328 13.4 */
if (en && (en->lsa.age < LSA_MAXAGE))
{
@ -101,6 +130,9 @@ ospf_advance_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_ls
en->init_age = 0;
en->inst_time = now;
lsasum_calculate(&en->lsa, en->lsa_body);
OSPF_TRACE(D_EVENTS, "Advancing LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
}
else
{
@ -129,6 +161,11 @@ ospf_advance_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_ls
en->lsa.age = LSA_MAXAGE;
en->init_age = lsa->age;
en->inst_time = now;
OSPF_TRACE(D_EVENTS, "Resetting LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
OSPF_TRACE(D_EVENTS, "Postponing LSA: Type: %04x, Id: %R, Rt: %R",
en->lsa_type, en->lsa.id, en->lsa.rt);
}
}
else
@ -137,6 +174,7 @@ ospf_advance_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_ls
* We do not have received LSA in the database. We have to flush the
* received LSA. It has to be installed in the database to secure
* retransmissions. Note that the received LSA may already be MaxAge.
* Also note that en->next_lsa_* may be defined.
*/
lsa->age = LSA_MAXAGE;
@ -150,7 +188,7 @@ ospf_advance_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_ls
* the neighbor we received it from), we cheat a bit here.
*/
ospf_lsupd_flood(p, en, NULL);
ospf_flood_lsa(p, en, NULL);
}
@ -167,11 +205,11 @@ ospf_do_originate_lsa(struct ospf_proto *p, struct top_hash_entry *en, void *lsa
/* Prepare to flush old LSA */
if (en->lsa.age != LSA_MAXAGE)
{
OSPF_TRACE(D_EVENTS, "Resetting LSA: Type: %04x, Id: %R, Rt: %R",
en->lsa_type, en->lsa.id, en->lsa.rt);
OSPF_TRACE(D_EVENTS, "Resetting LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
en->lsa.age = LSA_MAXAGE;
ospf_lsupd_flood(p, en, NULL);
ospf_flood_lsa(p, en, NULL);
return 0;
}
@ -183,9 +221,6 @@ ospf_do_originate_lsa(struct ospf_proto *p, struct top_hash_entry *en, void *lsa
en->lsa.sn = LSA_ZEROSEQNO;
}
OSPF_TRACE(D_EVENTS, "Originating LSA: Type: %04x, Id: %R, Rt: %R",
en->lsa_type, en->lsa.id, en->lsa.rt);
/*
* lsa.type_raw is initialized by ospf_hash_get() to OSPFv3 LSA type.
* lsa_set_options() implicitly converts it to OSPFv2 LSA type, assuming that
@ -205,7 +240,13 @@ ospf_do_originate_lsa(struct ospf_proto *p, struct top_hash_entry *en, void *lsa
en->inst_time = now;
lsasum_calculate(&en->lsa, en->lsa_body);
ospf_lsupd_flood(p, en, NULL);
OSPF_TRACE(D_EVENTS, "Originating LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
ospf_flood_lsa(p, en, NULL);
if (en->mode == LSA_M_BASIC)
ospf_schedule_rtcalc(p);
return 1;
}
@ -244,15 +285,20 @@ ospf_originate_lsa(struct ospf_proto *p, struct ospf_new_lsa *lsa)
{
log(L_ERR "%s: LSA ID collision for %I/%d",
p->p.name, lsa->nf->fn.prefix, lsa->nf->fn.pxlen);
en = NULL;
goto drop;
}
/* XXXX check for maxage or opts change */
if (en->mode != lsa->mode)
en->mode = lsa->mode;
if (en->next_lsa_body)
{
/* Ignore the new LSA if it is the same as the scheduled one */
if ((lsa_blen == en->next_lsa_blen) && !memcmp(lsa_body, en->next_lsa_body, lsa_blen))
if ((lsa_blen == en->next_lsa_blen) &&
!memcmp(lsa_body, en->next_lsa_body, lsa_blen) &&
(!ospf_is_v2(p) || (lsa->opts == en->next_lsa_opts)))
goto drop;
/* Free scheduled LSA */
@ -263,13 +309,19 @@ ospf_originate_lsa(struct ospf_proto *p, struct ospf_new_lsa *lsa)
}
/* Ignore the the new LSA if is the same as the current one */
if ((lsa_length == en->lsa.length) && !memcmp(lsa_body, en->lsa_body, lsa_blen))
if ((en->lsa.age < LSA_MAXAGE) &&
(lsa_length == en->lsa.length) &&
!memcmp(lsa_body, en->lsa_body, lsa_blen) &&
(!ospf_is_v2(p) || (lsa->opts == lsa_get_options(&en->lsa))))
goto drop;
lsa_body = lsab_flush(p);
if (! ospf_do_originate_lsa(p, en, lsa_body, lsa_blen, lsa->opts))
{
OSPF_TRACE(D_EVENTS, "Postponing LSA: Type: %04x, Id: %R, Rt: %R",
en->lsa_type, en->lsa.id, en->lsa.rt);
en->next_lsa_body = lsa_body;
en->next_lsa_blen = lsa_blen;
en->next_lsa_opts = lsa->opts;
@ -293,8 +345,6 @@ ospf_originate_next_lsa(struct ospf_proto *p, struct top_hash_entry *en)
en->next_lsa_body = NULL;
en->next_lsa_blen = 0;
en->next_lsa_opts = 0;
// XXXX: schedule_rtcalc(p);
}
static void
@ -309,8 +359,8 @@ ospf_refresh_lsa(struct ospf_proto *p, struct top_hash_entry *en)
* switched lsa.age to LSA_MAXAGE.
*/
OSPF_TRACE(D_EVENTS, "Refreshing LSA: Type: %04x, Id: %R, Rt: %R",
en->lsa_type, en->lsa.id, en->lsa.rt);
OSPF_TRACE(D_EVENTS, "Refreshing LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
ASSERT(en->next_lsa_body == NULL);
@ -324,7 +374,7 @@ ospf_refresh_lsa(struct ospf_proto *p, struct top_hash_entry *en)
en->next_lsa_opts = ospf_is_v2(p) ? lsa_get_options(&en->lsa) : 0;
en->lsa.age = LSA_MAXAGE;
ospf_lsupd_flood(p, en, NULL);
ospf_flood_lsa(p, en, NULL);
return;
}
@ -333,7 +383,7 @@ ospf_refresh_lsa(struct ospf_proto *p, struct top_hash_entry *en)
en->init_age = 0;
en->inst_time = now;
lsasum_calculate(&en->lsa, en->lsa_body);
ospf_lsupd_flood(p, en, NULL);
ospf_flood_lsa(p, en, NULL);
}
/**
@ -349,16 +399,13 @@ ospf_refresh_lsa(struct ospf_proto *p, struct top_hash_entry *en)
* immediately removed when being flushed, the caller may assume that @en still
* exists after the call. The function is the opposite of ospf_originate_lsa()
* and is supposed to do the right thing even in cases of postponed
* origination. Note that this function do not schedule routing table
* calculation, the caller is responsible to do it if necessary.
* origination.
*/
void
ospf_flush_lsa(struct ospf_proto *p, struct top_hash_entry *en)
{
OSPF_TRACE(D_EVENTS, "Flushing LSA: Type: %04x, Id: %R, Rt: %R",
en->lsa_type, en->lsa.id, en->lsa.rt);
en->rtcalc = 0;
OSPF_TRACE(D_EVENTS, "Flushing LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
if (en->next_lsa_body)
{
@ -372,7 +419,12 @@ ospf_flush_lsa(struct ospf_proto *p, struct top_hash_entry *en)
return;
en->lsa.age = LSA_MAXAGE;
ospf_lsupd_flood(p, en, NULL);
ospf_flood_lsa(p, en, NULL);
if (en->mode == LSA_M_BASIC)
ospf_schedule_rtcalc(p);
en->mode = LSA_M_BASIC;
}
static void
@ -450,7 +502,6 @@ ospf_update_lsadb(struct ospf_proto *p)
if (real_age >= LSA_MAXAGE)
{
ospf_flush_lsa(p, en);
schedule_rtcalc(p);
continue;
}
@ -510,9 +561,9 @@ ort_to_lsaid(struct ospf_proto *p, ort *nf)
static void *
lsab_alloc(struct ospf_proto *p, unsigned size)
lsab_alloc(struct ospf_proto *p, uint size)
{
unsigned offset = p->lsab_used;
uint offset = p->lsab_used;
p->lsab_used += size;
if (p->lsab_used > p->lsab_size)
{
@ -524,7 +575,7 @@ lsab_alloc(struct ospf_proto *p, unsigned size)
}
static inline void *
lsab_allocz(struct ospf_proto *p, unsigned size)
lsab_allocz(struct ospf_proto *p, uint size)
{
void *r = lsab_alloc(p, size);
bzero(r, size);
@ -547,7 +598,7 @@ lsab_reset(struct ospf_proto *p)
}
static inline void *
lsab_offset(struct ospf_proto *p, unsigned offset)
lsab_offset(struct ospf_proto *p, uint offset)
{
return ((byte *) p->lsab) + offset;
}
@ -815,15 +866,6 @@ prepare_rt3_lsa_body(struct ospf_proto *p, struct ospf_area *oa)
rt->options = get_rt_options(p, oa, bitv) | (oa->options & LSA_OPTIONS_MASK);
}
/**
* ospf_originate_rt_lsa - build new instance of router LSA
* @oa: ospf_area which is LSA built to
*
* It builds router LSA walking through all OSPF interfaces in
* specified OSPF area. This function is mostly called from
* area_disp(). Builds new LSA, increases sequence number (if old
* instance exists) and sets age of LSA to zero.
*/
static void
ospf_originate_rt_lsa(struct ospf_proto *p, struct ospf_area *oa)
{
@ -834,6 +876,8 @@ ospf_originate_rt_lsa(struct ospf_proto *p, struct ospf_area *oa)
.opts = oa->options
};
OSPF_TRACE(D_EVENTS, "Updating router state for area %R", oa->areaid);
if (ospf_is_v2(p))
prepare_rt2_lsa_body(p, oa);
else
@ -908,15 +952,6 @@ prepare_net3_lsa_body(struct ospf_proto *p, struct ospf_iface *ifa)
net->optx = options & LSA_OPTIONS_MASK;
}
/**
* ospf_originate_net_lsa - originates of deletes network LSA
* @ifa: interface which is LSA originated for
*
* Interface counts number of adjacent neighbors. If this number is
* lower than one or interface is not in state %OSPF_IS_DR it deletes
* and premature ages instance of network LSA for specified interface.
* In other case, new instance of network LSA is originated.
*/
static void
ospf_originate_net_lsa(struct ospf_proto *p, struct ospf_iface *ifa)
{
@ -928,6 +963,8 @@ ospf_originate_net_lsa(struct ospf_proto *p, struct ospf_iface *ifa)
.ifa = ifa
};
OSPF_TRACE(D_EVENTS, "Updating network state for %s (Id: %R)", ifa->ifname, lsa.id);
if (ospf_is_v2(p))
prepare_net2_lsa_body(p, ifa);
else
@ -977,10 +1014,9 @@ prepare_sum3_rt_lsa_body(struct ospf_proto *p, u32 drid, u32 metric, u32 options
void
ospf_originate_sum_net_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, int metric)
{
struct top_hash_entry *en;
struct ospf_new_lsa lsa = {
.type = LSA_T_SUM_NET,
.mode = LSA_M_RTCALC,
.dom = oa->areaid,
.id = ort_to_lsaid(p, nf),
.opts = oa->options,
@ -992,32 +1028,26 @@ ospf_originate_sum_net_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf,
else
prepare_sum3_net_lsa_body(p, nf, metric);
en = ospf_originate_lsa(p, &lsa);
en->rtcalc = LSA_RTCALC;
ospf_originate_lsa(p, &lsa);
}
void
ospf_originate_sum_rt_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, int metric, u32 options)
{
struct top_hash_entry *en;
u32 rid = ipa_to_rid(nf->fn.prefix);
/* In OSPFv3, LSA ID is meaningless, but we still use Router ID of ASBR */
struct ospf_new_lsa lsa = {
.type = LSA_T_SUM_RT,
.mode = LSA_M_RTCALC,
.dom = oa->areaid,
.id = rid,
.id = ipa_to_rid(nf->fn.prefix), /* Router ID of ASBR, irrelevant for OSPFv3 */
.opts = oa->options
};
if (ospf_is_v2(p))
prepare_sum2_lsa_body(p, 0, metric);
else
prepare_sum3_rt_lsa_body(p, rid, metric, options & LSA_OPTIONS_MASK);
prepare_sum3_rt_lsa_body(p, lsa.id, metric, options & LSA_OPTIONS_MASK);
en = ospf_originate_lsa(p, &lsa);
en->rtcalc = LSA_RTCALC;
ospf_originate_lsa(p, &lsa);
}
@ -1076,13 +1106,15 @@ prepare_ext3_lsa_body(struct ospf_proto *p, ort *nf,
/**
* originate_ext_lsa - new route received from nest and filters
* @p: OSPF protocol instance
* @oa: ospf_area for which LSA is originated
* @nf: network prefix and mask
* @src: the source of origination of the LSA (EXT_EXPORT/EXT_NSSA)
* @metric: the metric of a route (possibly with appropriate E-bit)
* @mode: the mode of the LSA (LSA_M_EXPORT or LSA_M_RTCALC)
* @metric: the metric of a route
* @ebit: E-bit for route metric (bool)
* @fwaddr: the forwarding address
* @tag: the route tag
* @pbit: P-bit for NSSA LSAs, ignored for external LSAs
* @pbit: P-bit for NSSA LSAs (bool), ignored for external LSAs
*
* If I receive a message that new route is installed, I try to originate an
* external LSA. If @oa is an NSSA area, NSSA-LSA is originated instead.
@ -1091,13 +1123,12 @@ prepare_ext3_lsa_body(struct ospf_proto *p, ort *nf,
* the export from ospf_rt_notify(), or the NSSA-EXT translation.
*/
void
ospf_originate_ext_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, u8 rtcalc,
ospf_originate_ext_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, u8 mode,
u32 metric, u32 ebit, ip_addr fwaddr, u32 tag, int pbit)
{
struct top_hash_entry *en;
struct ospf_new_lsa lsa = {
.type = oa ? LSA_T_NSSA : LSA_T_EXT,
.mode = mode, /* LSA_M_EXPORT or LSA_M_RTCALC */
.dom = oa ? oa->areaid : 0,
.id = ort_to_lsaid(p, nf),
.opts = oa ? (pbit ? OPT_P : 0) : OPT_E,
@ -1109,8 +1140,7 @@ ospf_originate_ext_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, u8 r
else
prepare_ext3_lsa_body(p, nf, metric, ebit, fwaddr, tag, oa && pbit);
en = ospf_originate_lsa(p, &lsa);
en->rtcalc = rtcalc;
ospf_originate_lsa(p, &lsa);
}
static void
@ -1228,7 +1258,7 @@ ospf_rt_notify(struct proto *P, rtable *tbl UNUSED, net *n, rte *new, rte *old U
/* Old external route might blocked some NSSA translation */
if ((p->areano > 1) && rt_is_nssa(nf) && nf->n.oa->translate)
schedule_rtcalc(p);
ospf_schedule_rtcalc(p);
return;
}
@ -1262,7 +1292,7 @@ ospf_rt_notify(struct proto *P, rtable *tbl UNUSED, net *n, rte *new, rte *old U
}
nf = (ort *) fib_get(&p->rtf, &n->n.prefix, n->n.pxlen);
ospf_originate_ext_lsa(p, oa, nf, 0, metric, ebit, fwd, tag, 1);
ospf_originate_ext_lsa(p, oa, nf, LSA_M_EXPORT, metric, ebit, fwd, tag, 1);
nf->external_rte = 1;
}
@ -1320,6 +1350,8 @@ ospf_originate_link_lsa(struct ospf_proto *p, struct ospf_iface *ifa)
.ifa = ifa
};
OSPF_TRACE(D_EVENTS, "Updating link state for %s (Id: %R)", ifa->ifname, lsa.id);
prepare_link_lsa_body(p, ifa);
ifa->link_lsa = ospf_originate_lsa(p, &lsa);
@ -1576,6 +1608,8 @@ ospf_originate_prefix_net_lsa(struct ospf_proto *p, struct ospf_iface *ifa)
ifa->pxn_lsa = ospf_originate_lsa(p, &lsa);
}
static inline int breaks_minlsinterval(struct top_hash_entry *en)
{ return en && (en->lsa.age < LSA_MAXAGE) && ((en->inst_time + MINLSINTERVAL) > now); }
void
ospf_update_topology(struct ospf_proto *p)
@ -1587,6 +1621,25 @@ ospf_update_topology(struct ospf_proto *p)
{
if (oa->update_rt_lsa)
{
/*
* Generally, MinLSInterval is enforced in ospf_do_originate_lsa(), but
* origination of (prefix) router LSA is a special case. We do not want to
* prepare a new router LSA body and then postpone it in en->next_lsa_body
* for later origination, because there are side effects (updates of
* rt_pos_* and px_pos_* in ospf_iface structures) during that, which may
* confuse routing table calculation if executed after LSA body
* preparation but before final LSA origination (as rtcalc would use
* current rt_pos_* indexes but the old router LSA body).
*
* Here, we ensure that MinLSInterval is observed and we do not even try
* to originate these LSAs if it is not. Therefore, origination, when
* requested, will succeed unless there is also a seqnum wrapping, which
* is not a problem because in that case rtcalc is blocked by MaxAge.
*/
if (breaks_minlsinterval(oa->rt) || breaks_minlsinterval(oa->pxr_lsa))
continue;
ospf_originate_rt_lsa(p, oa);
ospf_originate_prefix_rt_lsa(p, oa);
oa->update_rt_lsa = 0;
@ -1624,8 +1677,6 @@ ospf_update_topology(struct ospf_proto *p)
ifa->update_net_lsa = 0;
}
}
// XXXX schedule_rtcalc(p);
}
@ -1664,7 +1715,7 @@ ospf_top_hash_u32(u32 a)
return a;
}
static unsigned
static uint
ospf_top_hash(struct top_graph *f, u32 domain, u32 lsaid, u32 rtrid, u32 type)
{
/* In OSPFv2, we don't know Router ID when looking for network LSAs.
@ -1685,12 +1736,14 @@ ospf_top_hash(struct top_graph *f, u32 domain, u32 lsaid, u32 rtrid, u32 type)
/**
* ospf_top_new - allocated new topology database
* @p: OSPF protocol instance
* @pool: pool for allocation
*
* this dynamically hashed structure is often used for keeping lsas. mainly
* its used in @ospf_area structure.
* This dynamically hashed structure is used for keeping LSAs. Mainly it is used
* for the LSA database of the OSPF protocol, but also for LSA retransmission
* and request lists of OSPF neighbors.
*/
struct top_graph *
ospf_top_new(pool *pool)
ospf_top_new(struct ospf_proto *p, pool *pool)
{
struct top_graph *f;
@ -1701,6 +1754,7 @@ ospf_top_new(pool *pool)
ospf_top_ht_alloc(f);
f->hash_entries = 0;
f->hash_entries_min = 0;
f->ospf2 = ospf_is_v2(p);
return f;
}
@ -1715,8 +1769,8 @@ ospf_top_free(struct top_graph *f)
static void
ospf_top_rehash(struct top_graph *f, int step)
{
unsigned int oldn, oldh;
struct top_hash_entry **n, **oldt, **newt, *e, *x;
uint oldn, oldh;
oldn = f->hash_size;
oldt = f->hash_table;
@ -1752,7 +1806,7 @@ ospf_hash_find(struct top_graph *f, u32 domain, u32 lsa, u32 rtr, u32 type)
e = e->next;
/* Hide hash entry with empty lsa_body */
return e->lsa_body ? e : NULL;
return (e && e->lsa_body) ? e : NULL;
}
/* In OSPFv2, lsa.id is the same as lsa.rt for router LSA. In OSPFv3, we don't know
@ -1780,11 +1834,15 @@ ospf_hash_find_rt(struct top_graph *f, u32 domain, u32 rtr)
return rv;
}
/*
* ospf_hash_find_rt3_first() and ospf_hash_find_rt3_next() are used exclusively
* for lsa_walk_rt_init(), lsa_walk_rt(), therefore they skip MaxAge entries.
*/
static inline struct top_hash_entry *
find_matching_rt3(struct top_hash_entry *e, u32 domain, u32 rtr)
{
while (e && (e->lsa.rt != rtr || e->lsa_type != LSA_T_RT ||
e->domain != domain || e->lsa_body == NULL))
e->domain != domain || e->lsa.age == LSA_MAXAGE))
e = e->next;
return e;
}
@ -1917,7 +1975,7 @@ ospf_dump_lsa(struct top_hash_entry *he, struct proto *p)
void
ospf_top_dump(struct top_graph *f, struct proto *p)
{
unsigned int i;
uint i;
OSPF_TRACE(D_EVENTS, "Hash entries: %d", f->hash_entries);
for (i = 0; i < f->hash_size; i++)
@ -1928,115 +1986,3 @@ ospf_top_dump(struct top_graph *f, struct proto *p)
}
}
*/
#if 0
void
update_rt_lsa(struct ospf_area *oa)
{
struct ospf_proto *po = oa->po;
if ((oa->rt) && ((oa->rt->inst_t + MINLSINTERVAL)) > now)
return;
originate_rt_lsa(oa);
if (ospf_is_v3(p))
originate_prefix_rt_lsa(oa);
schedule_rtcalc(p);
oa->origrt = 0;
}
static inline int
check_sum2_net_lsa(struct top_hash_entry *en, struct fib_node *fn, u32 metric)
{
struct ospf_lsa_sum2 *sum = en->lsa_body;
if (fn->pxlen != ip4_masklen(sum->netmask))
return -1;
return (en->lsa.sn != LSA_MAXSEQNO) && (sum->metric == metric);
}
static inline int
check_sum3_net_lsa(struct top_hash_entry *en, struct fib_node *fn, u32 metric)
{
struct ospf_lsa_sum3_net *sum = en->lsa_body;
ip6_addr prefix;
int pxlen;
u8 pxopts;
u16 rest;
lsa_get_ipv6_prefix(sum->prefix, &prefix, &pxlen, &pxopts, &rest);
if ((fn->pxlen != pxlen) || !ip6_equal(fn->prefix, prefix))
return -1;
return (en->lsa.sn != LSA_MAXSEQNO) && (sum->metric == metric);
}
static int
check_sum_net_lsa(struct ospf_proto *po, struct top_hash_entry *en, struct fib_node *fn, u32 metric)
{
int rv = ospf_is_v2(po) ?
check_sum2_net_lsa(en, fn, metric) :
check_sum3_net_lsa(en, fn, metric);
if (rv < 0)
log(L_ERR "%s: LSAID collision for %I/%d", p->p.name, fn->prefix, fn->pxlen);
return rv;
}
static int
check_sum_rt_lsa(struct ospf_proto *po, struct top_hash_entry *en, u32 drid, u32 metric, u32 options)
{
if (en->lsa.sn == LSA_MAXSEQNO)
return 0;
if (ospf_is_v2(po))
{
struct ospf_lsa_sum2 *sum = en->lsa_body;
return (sum->metric == metric);
}
else
{
struct ospf_lsa_sum3_rt *sum = en->lsa_body;
return (sum->options == options) && (sum->metric == metric) && (sum->drid == drid);
}
}
OSPF_TRACE(D_EVENTS, "Originating router-LSA for area %R", oa->areaid);
OSPF_TRACE(D_EVENTS, "Originating network-LSA for iface %s", ifa->ifname);
OSPF_TRACE(D_EVENTS, "Originating net-summary-LSA for %I/%d (metric %d)", fn->prefix, fn->pxlen, metric);
OSPF_TRACE(D_EVENTS, "Originating rt-summary-LSA for %R (metric %d)", rid, metric);
OSPF_TRACE(D_EVENTS, "Originating %s-LSA for %I/%d",
nssa ? "NSSA" : "AS-external", fn->prefix, fn->pxlen);
OSPF_TRACE(D_EVENTS, "Originating link-LSA for iface %s", ifa->ifname);
OSPF_TRACE(D_EVENTS, "Originating router prefix-LSA for area %R", oa->areaid);
OSPF_TRACE(D_EVENTS, "Originating network prefix-LSA for iface %s", ifa->ifname);
en = ospf_hash_find(po->gr, lsa.dom, lsa.id, po->router_id, lsa.type);
if (en && check_ext_lsa(po, en, fn, metric, fwaddr, tag))
return;
*length = sizeof(struct ospf_lsa_header) + po->lsab_used;
return lsab_flush(po);
*length = po->lsab_used + sizeof(struct ospf_lsa_header);
return lsab_flush(po);
#endif

View File

@ -18,7 +18,7 @@ struct top_hash_entry
in intra-area routing table calculation */
struct top_hash_entry *next; /* Next in hash chain */
struct ospf_lsa_header lsa;
u16 lsa_type; /* lsa.type processed and converted to common values */
u16 lsa_type; /* lsa.type processed and converted to common values (LSA_T_*) */
u16 init_age; /* Initial value for lsa.age during inst_time */
u32 domain; /* Area ID for area-wide LSAs, Iface ID for link-wide LSAs */
// struct ospf_area *oa;
@ -37,13 +37,115 @@ struct top_hash_entry
#define OUTSPF 0
#define CANDIDATE 1
#define INSPF 2
u8 rtcalc; /* LSA generated during RT calculation (LSA_RTCALC or LSA_STALE)*/
u8 mode; /* LSA generated during RT calculation (LSA_RTCALC or LSA_STALE)*/
u8 nhs_reuse; /* Whether nhs nodes can be reused during merging.
See a note in rt.c:merge_nexthops() */
};
#define LSA_RTCALC 1
#define LSA_STALE 2
/* Prevents ospf_hash_find() to ignore the entry, for p->lsrqh and p->lsrth */
#define LSA_BODY_DUMMY ((void *) 1)
/*
* LSA entry life cycle
*
* LSA entries are created by ospf_originate_lsa() (for locally originated LSAs)
* or ospf_install_lsa() (for LSAs received from neighbors). A regular (like
* newly originated) LSA entry has defined lsa_body nad lsa.age < %LSA_MAXAGE.
* When the LSA is requested to be flushed by ospf_flush_lsa(), the lsa.age is
* set to %LSA_MAXAGE and flooded. Flush process is finished asynchronously,
* when (at least) flooding is acknowledged by neighbors. This is detected in
* ospf_update_lsadb(), then ospf_clear_lsa() is called to free the LSA body but
* the LSA entry is kept. Such LSA does not formally exist, we keep an empty
* entry (until regular timeout) to know inst_time and lsa.sn in the case of
* later reorigination. After the timeout, LSA is removed by ospf_remove_lsa().
*
* When LSA origination is requested (by ospf_originate_lsa()). but it is not
* possible to do that immediately (because of MinLSInterval or because the
* sequence number is wrapping), The new LSA is scheduled for later origination
* in next_lsa_* fields of the LSA entry. The later origination is handled by
* ospf_originate_next_lsa() called from ospf_update_lsadb(). We can see that
* both real origination and final flush is asynchronous to ospf_originate_lsa()
* and ospf_flush_lsa().
*
* LSA entry therefore could be in three basic states:
* R - regular (lsa.age < %LSA_MAXAGE, lsa_body != NULL)
* F - flushing (lsa.age == %LSA_MAXAGE, lsa_body != NULL)
* E - empty (lsa.age == %LSA_MAXAGE, lsa_body == NULL)
*
* And these states are doubled based on whether the next LSA is scheduled
* (next_lsa_body != NULL, -n suffix) or not (next_lsa_body == NULL). We also
* use X for a state of non-existentce. We have this basic state graph
* (transitions from any state to R are omitted for clarity):
*
* X --> R ---> F ---> E --> X
* | \ / | |
* | \/ | |
* | /\ | |
* | / \ | |
* Rn --> Fn --> En
*
* The transitions are:
*
* any state -> R - new LSA origination requested and executed
* R -> Rn, F -> Fn, E -> En - new LSA origination requested and postponed
* R -> Fn - new LSA origination requested, seqnum wrapping
* Rn,Fn,En -> R - postponed LSA finally originated
* R -> R - LSA refresh done
* R -> Fn - LSA refresh with seqnum wrapping
* R -> F, Rn -> Fn - LSA age timeout
* R,Rn,Fn -> F, En -> E - LSA flush requested
* F -> E, Fn -> En - LSA flush done (acknowledged)
* E -> X - LSA real age timeout (or immediate for received LSA)
*
* The 'origination requested' and 'flush requested' transitions are triggered
* and done by ospf_originate_lsa() and ospf_flush_lsa(), the rest is handled
* asynchronously by ospf_update_lsadb().
*
* The situation is significantly simpler for non-local (received) LSAs - there
* is no postponed origination and after flushing is done, LSAs are immediately
* removed, so it is just X -> R -> F -> X, or X -> F -> X (when MaxAge LSA is
* received).
*
* There are also some special cases related to handling of received unknown
* self-originated LSAs in ospf_advance_lsa():
* X -> F - LSA is received and immediately flushed
* R,Rn -> Fn - LSA with MaxSeqNo received and flushed, current LSA scheduled
*/
#define LSA_M_BASIC 0
#define LSA_M_EXPORT 1
#define LSA_M_RTCALC 2
#define LSA_M_STALE 3
/*
* LSA entry modes:
*
* LSA_M_BASIC - The LSA is explicitly originated using ospf_originate_lsa() and
* explicitly flushed using ospf_flush_lsa(). When the LSA is changed, the
* routing table calculation is scheduled. This is also the mode used for LSAs
* received from neighbors. Example: Router-LSAs, Network-LSAs.
*
* LSA_M_EXPORT - like LSA_M_BASIC, but the routing table calculation does not
* depend on the LSA. Therefore, the calculation is not scheduled when the LSA
* is changed. Example: AS-external-LSAs for exported routes.
*
* LSA_M_RTCALC - The LSA has to be requested using ospf_originate_lsa() during
* each routing table calculation, otherwise it is flushed automatically at the
* end of the calculation. The LSA is a result of the calculation and not a
* source for it. Therefore, the calculation is not scheduled when the LSA is
* changed. Example: Summary-LSAs.
*
* LSA_M_STALE - Temporary state for LSA_M_RTCALC that is not requested during
* the current routing table calculation.
*
*
* Note that we do not schedule the routing table calculation when the age of
* LSA_M_BASIC LSA is changed to MaxAge because of the sequence number wrapping,
* As it will be switched back to a regular one ASAP.
*/
struct top_graph
{
@ -61,6 +163,7 @@ struct top_graph
struct ospf_new_lsa
{
u16 type;
u8 mode;
u32 dom;
u32 id;
u16 opts;
@ -69,9 +172,8 @@ struct ospf_new_lsa
struct ort *nf;
};
struct top_graph *ospf_top_new(pool *);
void ospf_top_free(struct top_graph *);
void ospf_top_dump(struct top_graph *, struct proto *);
struct top_graph *ospf_top_new(struct ospf_proto *p, pool *pool);
void ospf_top_free(struct top_graph *f);
struct top_hash_entry * ospf_install_lsa(struct ospf_proto *p, struct ospf_lsa_header *lsa, u32 type, u32 domain, void *body);
struct top_hash_entry * ospf_originate_lsa(struct ospf_proto *p, struct ospf_new_lsa *lsa);
@ -84,7 +186,7 @@ static inline void ospf_flush2_lsa(struct ospf_proto *p, struct top_hash_entry *
void ospf_originate_sum_net_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, int metric);
void ospf_originate_sum_rt_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, int metric, u32 options);
void ospf_originate_ext_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, u8 rtcalc, u32 metric, u32 ebit, ip_addr fwaddr, u32 tag, int pbit);
void ospf_originate_ext_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, u8 mode, u32 metric, u32 ebit, ip_addr fwaddr, u32 tag, int pbit);
void ospf_rt_notify(struct proto *P, rtable *tbl, net *n, rte *new, rte *old, ea_list *attrs);
void ospf_update_topology(struct ospf_proto *p);