mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2024-11-08 12:18:42 +00:00
Filter: documentation of the M4 preprocessor
This commit is contained in:
parent
b40c0f028f
commit
550a6488c9
351
filter/decl.m4
351
filter/decl.m4
@ -6,149 +6,70 @@ m4_divert(-1)m4_dnl
|
||||
#
|
||||
# Can be freely distributed and used under the terms of the GNU GPL.
|
||||
#
|
||||
# THIS IS A M4 MACRO FILE GENERATING 3 FILES ALTOGETHER.
|
||||
# KEEP YOUR HANDS OFF UNLESS YOU KNOW WHAT YOU'RE DOING.
|
||||
# EDITING AND DEBUGGING THIS FILE MAY DAMAGE YOUR BRAIN SERIOUSLY.
|
||||
#
|
||||
# Global Diversions:
|
||||
# 4 enum fi_code
|
||||
# 5 enum fi_code to string
|
||||
# 6 dump line item
|
||||
# 7 dump line item callers
|
||||
# 8 linearize
|
||||
# 9 same (filter comparator)
|
||||
# 1 union in struct f_inst
|
||||
# 3 constructors + interpreter
|
||||
# But you're welcome to read and edit and debug if you aren't scared.
|
||||
#
|
||||
# Uncomment the following line to get exhaustive debug output.
|
||||
# m4_debugmode(aceflqtx)
|
||||
#
|
||||
# How it works:
|
||||
# 1) Instruction to code conversion (uses diversions 100..199)
|
||||
# 2) Code wrapping (uses diversions 1..99)
|
||||
# 3) Final preparation (uses diversions 200..299)
|
||||
# 4) Shipout
|
||||
#
|
||||
# See below for detailed description.
|
||||
#
|
||||
#
|
||||
# 1) Instruction to code conversion
|
||||
# The code provided in f-inst.c between consecutive INST() calls
|
||||
# is interleaved for many different places. It is here processed
|
||||
# and split into separate instances where split-by-instruction
|
||||
# happens. These parts are stored in temporary diversions listed:
|
||||
#
|
||||
# Per-inst Diversions:
|
||||
# 101 content of per-inst struct
|
||||
# 102 constructor arguments
|
||||
# 103 constructor body
|
||||
# 104 dump line item content
|
||||
# (there may be nothing in dump-line content and
|
||||
# it must be handled specially in phase 2)
|
||||
# 105 linearize body
|
||||
# 106 comparator body
|
||||
# 107 struct f_line_item content
|
||||
# 108 interpreter body
|
||||
#
|
||||
# Final diversions
|
||||
# 200+ completed text before it is flushed to output
|
||||
|
||||
m4_dnl m4_debugmode(aceflqtx)
|
||||
|
||||
m4_define(FID_ZONE, `m4_divert($1) /* $2 for INST_NAME() */')
|
||||
m4_define(FID_INST, `FID_ZONE(1, Instruction structure for config)')
|
||||
m4_define(FID_LINE, `FID_ZONE(2, Instruction structure for interpreter)')
|
||||
m4_define(FID_NEW, `FID_ZONE(3, Constructor)')
|
||||
m4_define(FID_ENUM, `FID_ZONE(4, Code enum)')
|
||||
m4_define(FID_ENUM_STR, `FID_ZONE(5, Code enum to string)')
|
||||
m4_define(FID_DUMP, `FID_ZONE(6, Dump line)')
|
||||
m4_define(FID_DUMP_CALLER, `FID_ZONE(7, Dump line caller)')
|
||||
m4_define(FID_LINEARIZE, `FID_ZONE(8, Linearize)')
|
||||
m4_define(FID_SAME, `FID_ZONE(9, Comparison)')
|
||||
|
||||
# Here are macros to allow you to _divert to the right directions.
|
||||
m4_define(FID_STRUCT_IN, `m4_divert(101)')
|
||||
m4_define(FID_NEW_ARGS, `m4_divert(102)')
|
||||
m4_define(FID_NEW_BODY, `m4_divert(103)')
|
||||
m4_define(FID_DUMP_BODY, `m4_divert(104)m4_define([[FID_DUMP_BODY_EXISTS]])')
|
||||
m4_define(FID_LINEARIZE_BODY, `m4_divert(105)m4_define([[FID_LINEARIZE_BODY_EXISTS]])')
|
||||
m4_define(FID_LINEARIZE_BODY, `m4_divert(105)')
|
||||
m4_define(FID_SAME_BODY, `m4_divert(106)')
|
||||
m4_define(FID_LINE_IN, `m4_divert(107)')
|
||||
m4_define(FID_INTERPRET_BODY, `m4_divert(108)')
|
||||
|
||||
m4_define(FID_ALL, `FID_INTERPRET_BODY');
|
||||
# Sometimes you want slightly different code versions in different
|
||||
# outputs.
|
||||
# Use FID_HIC(code for inst-gen.h, code for inst-gen.c, code for inst-interpret.c)
|
||||
# and put it into [[ ]] quotes if it shall contain commas.
|
||||
m4_define(FID_HIC, `m4_ifelse(TARGET, [[H]], [[$1]], TARGET, [[I]], [[$2]], TARGET, [[C]], [[$3]])')
|
||||
|
||||
# In interpreter code, this is quite common.
|
||||
m4_define(FID_INTERPRET_EXEC, `FID_HIC(,[[FID_INTERPRET_BODY()]],[[m4_divert(-1)]])')
|
||||
m4_define(FID_INTERPRET_NEW, `FID_HIC(,[[m4_divert(-1)]],[[FID_INTERPRET_BODY()]])')
|
||||
|
||||
# If the instruction is never converted to constant, the interpret
|
||||
# code is not produced at all for constructor
|
||||
m4_define(NEVER_CONSTANT, `m4_define([[INST_NEVER_CONSTANT]])')
|
||||
m4_define(FID_IFCONST, `m4_ifdef([[INST_NEVER_CONSTANT]],[[$2]],[[$1]])')
|
||||
|
||||
m4_define(INST_FLUSH, `m4_ifdef([[INST_NAME]], [[
|
||||
FID_ENUM
|
||||
INST_NAME(),
|
||||
FID_ENUM_STR
|
||||
[INST_NAME()] = "INST_NAME()",
|
||||
FID_INST
|
||||
struct {
|
||||
m4_undivert(101)
|
||||
} i_[[]]INST_NAME();
|
||||
FID_LINE
|
||||
struct {
|
||||
m4_undivert(107)
|
||||
} i_[[]]INST_NAME();
|
||||
FID_NEW
|
||||
FID_HIC(
|
||||
[[
|
||||
struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
|
||||
m4_undivert(102)
|
||||
);]],
|
||||
[[
|
||||
case INST_NAME():
|
||||
#define whati (&(what->i_]]INST_NAME()[[))
|
||||
m4_ifelse(m4_eval(INST_INVAL() > 0), 1, [[if (fstk->vcnt < INST_INVAL()) runtime("Stack underflow"); fstk->vcnt -= INST_INVAL(); ]])
|
||||
m4_undivert(108)
|
||||
#undef whati
|
||||
break;
|
||||
]],
|
||||
[[
|
||||
struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
|
||||
m4_undivert(102)
|
||||
)
|
||||
{
|
||||
struct f_inst *what = fi_new(fi_code);
|
||||
FID_IFCONST([[uint constargs = 1;]])
|
||||
#define whati (&(what->i_]]INST_NAME()[[))
|
||||
m4_undivert(103)
|
||||
FID_IFCONST([[if (!constargs)]])
|
||||
return what;
|
||||
FID_IFCONST([[m4_undivert(108)]])
|
||||
#undef whati
|
||||
}
|
||||
]])
|
||||
|
||||
FID_DUMP_CALLER
|
||||
case INST_NAME(): f_dump_line_item_]]INST_NAME()[[(item, indent + 1); break;
|
||||
|
||||
FID_DUMP
|
||||
m4_ifdef([[FID_DUMP_BODY_EXISTS]],
|
||||
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item_, const int indent)]],
|
||||
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item UNUSED, const int indent UNUSED)]])
|
||||
m4_undefine([[FID_DUMP_BODY_EXISTS]])
|
||||
{
|
||||
#define item (&(item_->i_]]INST_NAME()[[))
|
||||
m4_undivert(104)
|
||||
#undef item
|
||||
}
|
||||
|
||||
FID_LINEARIZE
|
||||
case INST_NAME(): {
|
||||
#define whati (&(what->i_]]INST_NAME()[[))
|
||||
#define item (&(dest->items[pos].i_]]INST_NAME()[[))
|
||||
m4_undivert(105)
|
||||
#undef whati
|
||||
#undef item
|
||||
dest->items[pos].fi_code = what->fi_code;
|
||||
dest->items[pos].lineno = what->lineno;
|
||||
break;
|
||||
}
|
||||
m4_undefine([[FID_LINEARIZE_BODY_EXISTS]])
|
||||
|
||||
FID_SAME
|
||||
case INST_NAME():
|
||||
#define f1 (&(f1_->i_]]INST_NAME()[[))
|
||||
#define f2 (&(f2_->i_]]INST_NAME()[[))
|
||||
m4_undivert(106)
|
||||
#undef f1
|
||||
#undef f2
|
||||
break;
|
||||
m4_divert(-1)FID_FLUSH(101,200)
|
||||
]])')
|
||||
|
||||
m4_define(INST, `m4_dnl
|
||||
INST_FLUSH()m4_dnl
|
||||
m4_define([[INST_NAME]], [[$1]])m4_dnl
|
||||
m4_define([[INST_INVAL]], [[$2]])m4_dnl
|
||||
m4_undefine([[INST_NEVER_CONSTANT]])m4_dnl
|
||||
FID_ALL() m4_dnl
|
||||
')
|
||||
|
||||
# If the instruction has some attributes (here called members),
|
||||
# these are typically carried with the instruction from constructor
|
||||
# to interpreter. This yields a line of code everywhere on the path.
|
||||
# FID_MEMBER is a macro to help with this task.
|
||||
m4_define(FID_MEMBER, `m4_dnl
|
||||
FID_LINE_IN
|
||||
$1 $2;
|
||||
@ -170,8 +91,14 @@ debug("%s$4\n", INDENT, $5);
|
||||
]])
|
||||
FID_INTERPRET_EXEC
|
||||
const $1 $2 = whati->$2
|
||||
FID_ALL')
|
||||
FID_INTERPRET_BODY')
|
||||
|
||||
# Instruction arguments are needed only until linearization is done.
|
||||
# This puts the arguments into the filter line to be executed before
|
||||
# the instruction itself.
|
||||
#
|
||||
# To achieve this, ARG_ANY must be called before anything writes into
|
||||
# the instruction line as it moves the instruction pointer forward.
|
||||
m4_define(ARG_ANY, `
|
||||
FID_STRUCT_IN
|
||||
struct f_inst * f$1;
|
||||
@ -188,14 +115,17 @@ FID_IFCONST([[
|
||||
}
|
||||
FID_LINEARIZE_BODY
|
||||
pos = linearize(dest, whati->f$1, pos);
|
||||
FID_ALL()')
|
||||
FID_INTERPRET_BODY()')
|
||||
|
||||
# Some arguments need to check their type. After that, ARG_ANY is called.
|
||||
m4_define(ARG, `ARG_ANY($1)
|
||||
FID_INTERPRET_EXEC()
|
||||
if (v$1.type != $2) runtime("Argument $1 of instruction %s must be of type $2, got 0x%02x", f_instruction_name(what->fi_code), v$1.type)m4_dnl
|
||||
FID_ALL()')
|
||||
FID_INTERPRET_BODY()')
|
||||
|
||||
m4_define(LINEX, `FID_INTERPRET_EXEC()LINEX_($1)FID_INTERPRET_NEW()return $1 FID_ALL()')
|
||||
# Executing another filter line. This replaces the recursion
|
||||
# that was needed in the former implementation.
|
||||
m4_define(LINEX, `FID_INTERPRET_EXEC()LINEX_($1)FID_INTERPRET_NEW()return $1 FID_INTERPRET_BODY()')
|
||||
m4_define(LINEX_, `do {
|
||||
fstk->estk[fstk->ecnt].pos = 0;
|
||||
fstk->estk[fstk->ecnt].line = $1;
|
||||
@ -226,13 +156,16 @@ do { if (whati->fl$1) {
|
||||
} } while(0)
|
||||
FID_INTERPRET_NEW
|
||||
return whati->f$1
|
||||
FID_ALL()')
|
||||
FID_INTERPRET_BODY()')
|
||||
|
||||
# Some of the instructions have a result. These constructions
|
||||
# state the result and put it to the right place.
|
||||
m4_define(RESULT, `RESULT_VAL([[ (struct f_val) { .type = $1, .val.$2 = $3 } ]])')
|
||||
m4_define(RESULT_VAL, `FID_HIC(, [[do { res = $1; fstk->vcnt++; } while (0)]],
|
||||
[[return fi_constant(what, $1)]])')
|
||||
m4_define(RESULT_VOID, `RESULT_VAL([[ (struct f_val) { .type = T_VOID } ]])')
|
||||
|
||||
# Some common filter instruction members
|
||||
m4_define(SYMBOL, `FID_MEMBER(struct symbol *, sym,
|
||||
[[strcmp(f1->sym->name, f2->sym->name) || (f1->sym->class != f2->sym->class)]], symbol %s, item->sym->name)')
|
||||
m4_define(RTC, `FID_MEMBER(struct rtable_config *, rtc, [[strcmp(f1->rtc->name, f2->rtc->name)]], route table %s, item->rtc->name)')
|
||||
@ -240,13 +173,174 @@ m4_define(STATIC_ATTR, `FID_MEMBER(struct f_static_attr, sa, f1->sa.sa_code != f
|
||||
m4_define(DYNAMIC_ATTR, `FID_MEMBER(struct f_dynamic_attr, da, f1->da.ea_code != f2->da.ea_code,,)')
|
||||
m4_define(ACCESS_RTE, `NEVER_CONSTANT()')
|
||||
|
||||
# 2) Code wrapping
|
||||
# The code produced in 1xx temporary diversions is a raw code without
|
||||
# any auxiliary commands and syntactical structures around. When the
|
||||
# instruction is done, INST_FLUSH is called. More precisely, it is called
|
||||
# at the beginning of INST() call and at the end of file.
|
||||
#
|
||||
# INST_FLUSH picks all the temporary diversions, wraps their content
|
||||
# into appropriate headers and structures and saves them into global
|
||||
# diversions listed:
|
||||
#
|
||||
# 4 enum fi_code
|
||||
# 5 enum fi_code to string
|
||||
# 6 dump line item
|
||||
# 7 dump line item callers
|
||||
# 8 linearize
|
||||
# 9 same (filter comparator)
|
||||
# 1 union in struct f_inst
|
||||
# 3 constructors + interpreter
|
||||
#
|
||||
# These global diversions contain blocks of code that can be directly
|
||||
# put into the final file, yet it still can't be written out now as
|
||||
# every instruction writes to all of these diversions.
|
||||
|
||||
# Code wrapping diversion names
|
||||
m4_define(FID_ZONE, `m4_divert($1) /* $2 for INST_NAME() */')
|
||||
m4_define(FID_INST, `FID_ZONE(1, Instruction structure for config)')
|
||||
m4_define(FID_LINE, `FID_ZONE(2, Instruction structure for interpreter)')
|
||||
m4_define(FID_NEW, `FID_ZONE(3, Constructor)')
|
||||
m4_define(FID_ENUM, `FID_ZONE(4, Code enum)')
|
||||
m4_define(FID_ENUM_STR, `FID_ZONE(5, Code enum to string)')
|
||||
m4_define(FID_DUMP, `FID_ZONE(6, Dump line)')
|
||||
m4_define(FID_DUMP_CALLER, `FID_ZONE(7, Dump line caller)')
|
||||
m4_define(FID_LINEARIZE, `FID_ZONE(8, Linearize)')
|
||||
m4_define(FID_SAME, `FID_ZONE(9, Comparison)')
|
||||
|
||||
# This macro does all the code wrapping. See inline comments.
|
||||
m4_define(INST_FLUSH, `m4_ifdef([[INST_NAME]], [[
|
||||
FID_ENUM m4_dnl Contents of enum fi_code { ... }
|
||||
INST_NAME(),
|
||||
FID_ENUM_STR m4_dnl Contents of const char * indexed by enum fi_code
|
||||
[INST_NAME()] = "INST_NAME()",
|
||||
FID_INST m4_dnl Anonymous structure inside struct f_inst
|
||||
struct {
|
||||
m4_undivert(101)
|
||||
} i_[[]]INST_NAME();
|
||||
FID_LINE m4_dnl Anonymous structure inside struct f_line_item
|
||||
struct {
|
||||
m4_undivert(107)
|
||||
} i_[[]]INST_NAME();
|
||||
FID_NEW m4_dnl Constructor and interpreter code together
|
||||
FID_HIC(
|
||||
[[ m4_dnl Public declaration of constructor in H file
|
||||
struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
|
||||
m4_undivert(102)
|
||||
);]],
|
||||
[[ m4_dnl The one case in The Big Switch inside interpreter
|
||||
case INST_NAME():
|
||||
#define whati (&(what->i_]]INST_NAME()[[))
|
||||
m4_ifelse(m4_eval(INST_INVAL() > 0), 1, [[if (fstk->vcnt < INST_INVAL()) runtime("Stack underflow"); fstk->vcnt -= INST_INVAL(); ]])
|
||||
m4_undivert(108)
|
||||
#undef whati
|
||||
break;
|
||||
]],
|
||||
[[ m4_dnl Constructor itself
|
||||
struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
|
||||
m4_undivert(102)
|
||||
)
|
||||
{
|
||||
/* Allocate the structure */
|
||||
struct f_inst *what = fi_new(fi_code);
|
||||
FID_IFCONST([[uint constargs = 1;]])
|
||||
|
||||
/* Initialize all the members */
|
||||
#define whati (&(what->i_]]INST_NAME()[[))
|
||||
m4_undivert(103)
|
||||
|
||||
/* If not constant, return the instruction itself */
|
||||
FID_IFCONST([[if (!constargs)]])
|
||||
return what;
|
||||
|
||||
/* Try to pre-calculate the result */
|
||||
FID_IFCONST([[m4_undivert(108)]])
|
||||
#undef whati
|
||||
}
|
||||
]])
|
||||
|
||||
FID_DUMP_CALLER m4_dnl Case in another big switch used in instruction dumping (debug)
|
||||
case INST_NAME(): f_dump_line_item_]]INST_NAME()[[(item, indent + 1); break;
|
||||
|
||||
FID_DUMP m4_dnl The dumper itself
|
||||
m4_ifdef([[FID_DUMP_BODY_EXISTS]],
|
||||
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item_, const int indent)]],
|
||||
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item UNUSED, const int indent UNUSED)]])
|
||||
m4_undefine([[FID_DUMP_BODY_EXISTS]])
|
||||
{
|
||||
#define item (&(item_->i_]]INST_NAME()[[))
|
||||
m4_undivert(104)
|
||||
#undef item
|
||||
}
|
||||
|
||||
FID_LINEARIZE m4_dnl The linearizer
|
||||
case INST_NAME(): {
|
||||
#define whati (&(what->i_]]INST_NAME()[[))
|
||||
#define item (&(dest->items[pos].i_]]INST_NAME()[[))
|
||||
m4_undivert(105)
|
||||
#undef whati
|
||||
#undef item
|
||||
dest->items[pos].fi_code = what->fi_code;
|
||||
dest->items[pos].lineno = what->lineno;
|
||||
break;
|
||||
}
|
||||
|
||||
FID_SAME m4_dnl This code compares two f_line"s while reconfiguring
|
||||
case INST_NAME():
|
||||
#define f1 (&(f1_->i_]]INST_NAME()[[))
|
||||
#define f2 (&(f2_->i_]]INST_NAME()[[))
|
||||
m4_undivert(106)
|
||||
#undef f1
|
||||
#undef f2
|
||||
break;
|
||||
|
||||
m4_divert(-1)FID_FLUSH(101,200) m4_dnl And finally this flushes all the unused diversions
|
||||
]])')
|
||||
|
||||
m4_define(INST, `m4_dnl This macro is called on beginning of each instruction.
|
||||
INST_FLUSH()m4_dnl First, old data is flushed
|
||||
m4_define([[INST_NAME]], [[$1]])m4_dnl Then we store instruction name,
|
||||
m4_define([[INST_INVAL]], [[$2]])m4_dnl instruction input value count
|
||||
m4_undefine([[INST_NEVER_CONSTANT]])m4_dnl and reset NEVER_CONSTANT trigger.
|
||||
FID_INTERPRET_BODY() m4_dnl By default, every code is interpreter code.
|
||||
')
|
||||
|
||||
# 3) Final preparation
|
||||
#
|
||||
# Now we prepare all the code around the global diversions.
|
||||
# It must be here, not in m4wrap, as we want M4 to mark the code
|
||||
# by #line directives correctly, not to claim that every single line
|
||||
# is at the beginning of the m4wrap directive.
|
||||
#
|
||||
# This part is split by the final file.
|
||||
# H for inst-gen.h
|
||||
# I for inst-interpret.c
|
||||
# C for inst-gen.c
|
||||
#
|
||||
# So we in cycle:
|
||||
# A. open a diversion
|
||||
# B. send there some code
|
||||
# C. close that diversion
|
||||
# D. flush a global diversion
|
||||
# E. open another diversion and goto B.
|
||||
#
|
||||
# Final diversions
|
||||
# 200+ completed text before it is flushed to output
|
||||
|
||||
# This is a list of output diversions
|
||||
m4_define(FID_WR_PUT_LIST)
|
||||
|
||||
# This macro does the steps C to E, see before.
|
||||
m4_define(FID_WR_PUT_ALSO, `m4_define([[FID_WR_PUT_LIST]],FID_WR_PUT_LIST()[[FID_WR_DPUT(]]FID_WR_DIDX[[)FID_WR_DPUT(]]$1[[)]])m4_define([[FID_WR_DIDX]],m4_eval(FID_WR_DIDX+1))m4_divert(FID_WR_DIDX)')
|
||||
|
||||
# These macros do the splitting between H/I/C
|
||||
m4_define(FID_WR_DIRECT, `m4_ifelse(TARGET,[[$1]],[[FID_WR_INIT()]],[[FID_WR_STOP()]])')
|
||||
m4_define(FID_WR_INIT, `m4_define([[FID_WR_DIDX]],200)m4_define([[FID_WR_PUT]],[[FID_WR_PUT_ALSO($]][[@)]])m4_divert(200)')
|
||||
m4_define(FID_WR_STOP, `m4_define([[FID_WR_PUT]])m4_divert(-1)')
|
||||
|
||||
# Here is the direct code to be put into the output files
|
||||
# together with the undiversions, being hidden under FID_WR_PUT()
|
||||
|
||||
m4_changequote([[,]])
|
||||
FID_WR_DIRECT(I)
|
||||
FID_WR_PUT(3)
|
||||
@ -412,13 +506,24 @@ struct f_line_item {
|
||||
|
||||
/* Instruction constructors */
|
||||
FID_WR_PUT(3)
|
||||
|
||||
m4_divert(-1)
|
||||
|
||||
# 4) Shipout
|
||||
#
|
||||
# Everything is prepared in FID_WR_PUT_LIST now. Let's go!
|
||||
|
||||
m4_changequote(`,')
|
||||
|
||||
# Flusher auxiliary macro
|
||||
m4_define(FID_FLUSH, `m4_ifelse($1,$2,,[[m4_undivert($1)FID_FLUSH(m4_eval($1+1),$2)]])')
|
||||
|
||||
# Defining the macro used in FID_WR_PUT_LIST
|
||||
m4_define(FID_WR_DPUT, `m4_undivert($1)')
|
||||
|
||||
# After the code is read and parsed, we:
|
||||
m4_m4wrap(`INST_FLUSH()m4_divert(0)FID_WR_PUT_LIST()m4_divert(-1)FID_FLUSH(1,200)')
|
||||
|
||||
m4_changequote([[,]])
|
||||
# And now M4 is going to parse f-inst.c, fill the diversions
|
||||
# and after the file is done, the content of m4_m4wrap (see before)
|
||||
# is executed.
|
||||
|
@ -167,7 +167,7 @@
|
||||
}
|
||||
whati->f1 = NULL;
|
||||
}
|
||||
FID_ALL
|
||||
FID_INTERPRET_BODY
|
||||
|
||||
FID_INTERPRET_EXEC
|
||||
if (fstk->vcnt < whati->count) /* TODO: make this check systematic */
|
||||
@ -198,7 +198,7 @@
|
||||
|
||||
FID_INTERPRET_EXEC
|
||||
fstk->vcnt -= whati->count;
|
||||
FID_ALL
|
||||
FID_INTERPRET_BODY
|
||||
|
||||
pm->len = whati->count;
|
||||
RESULT(T_PATH_MASK, path_mask, pm);
|
||||
@ -337,7 +337,7 @@
|
||||
FID_LINEARIZE_BODY
|
||||
{
|
||||
uint opos = pos;
|
||||
FID_ALL
|
||||
FID_INTERPRET_BODY
|
||||
|
||||
ARG_ANY(1);
|
||||
|
||||
@ -345,7 +345,7 @@
|
||||
if (opos < pos)
|
||||
dest->items[pos].flags |= FIF_PRINTED;
|
||||
}
|
||||
FID_ALL
|
||||
FID_INTERPRET_BODY
|
||||
|
||||
FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, %s, filter_return_str(item->fret));
|
||||
|
||||
@ -1045,7 +1045,8 @@
|
||||
INST(FI_ASSERT, 1, 0) { /* Birdtest Assert */
|
||||
NEVER_CONSTANT;
|
||||
ARG(1, T_BOOL);
|
||||
FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], string \"%s\", item->s);
|
||||
|
||||
FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], string %s, item->s);
|
||||
|
||||
ASSERT(s);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user