0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-11-18 00:58:42 +00:00
bird/sysdep/unix/io.c

1531 lines
30 KiB
C
Raw Normal View History

/*
* BIRD Internet Routing Daemon -- Unix I/O
*
* (c) 1998--2004 Martin Mares <mj@ucw.cz>
* (c) 2004 Ondrej Filip <feela@network.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/fcntl.h>
1999-10-29 12:09:29 +00:00
#include <sys/un.h>
#include <unistd.h>
#include <errno.h>
#include "nest/bird.h"
#include "lib/lists.h"
#include "lib/resource.h"
#include "lib/timer.h"
#include "lib/socket.h"
#include "lib/event.h"
#include "lib/string.h"
#include "nest/iface.h"
#include "lib/unix.h"
#include "lib/sysio.h"
/* Maximum number of calls of tx handler for one socket in one
* select iteration. Should be small enough to not monopolize CPU by
* one protocol instance.
*/
#define MAX_STEPS 4
/* Maximum number of calls of rx handler for all sockets in one select
iteration. RX callbacks are often much more costly so we limit
this to gen small latencies */
#define MAX_RX_STEPS 4
/*
* Tracked Files
*/
struct rfile {
resource r;
FILE *f;
};
static void
rf_free(resource *r)
{
struct rfile *a = (struct rfile *) r;
fclose(a->f);
}
static void
rf_dump(resource *r)
{
struct rfile *a = (struct rfile *) r;
debug("(FILE *%p)\n", a->f);
}
static struct resclass rf_class = {
"FILE",
sizeof(struct rfile),
rf_free,
rf_dump,
NULL
};
void *
1999-12-06 13:51:04 +00:00
tracked_fopen(pool *p, char *name, char *mode)
{
FILE *f = fopen(name, mode);
if (f)
{
struct rfile *r = ralloc(p, &rf_class);
r->f = f;
}
return f;
}
2000-06-05 12:19:12 +00:00
/**
* DOC: Timers
*
* Timers are resources which represent a wish of a module to call
* a function at the specified time. The platform dependent code
2000-06-07 13:25:53 +00:00
* doesn't guarantee exact timing, only that a timer function
2000-06-05 12:19:12 +00:00
* won't be called before the requested time.
*
2008-11-05 21:36:49 +00:00
* In BIRD, time is represented by values of the &bird_clock_t type
* which are integral numbers interpreted as a relative number of seconds since
* some fixed time point in past. The current time can be read
* from variable @now with reasonable accuracy and is monotonic. There is also
* a current 'absolute' time in variable @now_real reported by OS.
2000-06-05 12:19:12 +00:00
*
* Each timer is described by a &timer structure containing a pointer
* to the handler function (@hook), data private to this function (@data),
* time the function should be called at (@expires, 0 for inactive timers),
* for the other fields see |timer.h|.
*/
#define NEAR_TIMER_LIMIT 4
static list near_timers, far_timers;
static bird_clock_t first_far_timer = TIME_INFINITY;
2008-11-05 21:36:49 +00:00
bird_clock_t now, now_real;
static void
update_times_plain(void)
{
bird_clock_t new_time = time(NULL);
int delta = new_time - now_real;
if ((delta >= 0) && (delta < 60))
now += delta;
else if (now_real != 0)
log(L_WARN "Time jump, delta %d s", delta);
now_real = new_time;
}
static void
update_times_gettime(void)
{
struct timespec ts;
int rv;
rv = clock_gettime(CLOCK_MONOTONIC, &ts);
if (rv != 0)
die("clock_gettime: %m");
if (ts.tv_sec != now) {
if (ts.tv_sec < now)
log(L_ERR "Monotonic timer is broken");
now = ts.tv_sec;
now_real = time(NULL);
}
}
static int clock_monotonic_available;
static inline void
update_times(void)
{
if (clock_monotonic_available)
update_times_gettime();
else
update_times_plain();
}
static inline void
init_times(void)
{
struct timespec ts;
clock_monotonic_available = (clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
if (!clock_monotonic_available)
log(L_WARN "Monotonic timer is missing");
}
static void
tm_free(resource *r)
{
timer *t = (timer *) r;
tm_stop(t);
}
static void
tm_dump(resource *r)
{
timer *t = (timer *) r;
debug("(code %p, data %p, ", t->hook, t->data);
if (t->randomize)
debug("rand %d, ", t->randomize);
if (t->recurrent)
debug("recur %d, ", t->recurrent);
if (t->expires)
debug("expires in %d sec)\n", t->expires - now);
else
debug("inactive)\n");
}
static struct resclass tm_class = {
"Timer",
sizeof(timer),
tm_free,
tm_dump,
NULL
};
2000-06-05 12:19:12 +00:00
/**
* tm_new - create a timer
* @p: pool
*
* This function creates a new timer resource and returns
* a pointer to it. To use the timer, you need to fill in
* the structure fields and call tm_start() to start timing.
*/
timer *
tm_new(pool *p)
{
timer *t = ralloc(p, &tm_class);
return t;
}
static inline void
tm_insert_near(timer *t)
{
node *n = HEAD(near_timers);
while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires))
n = n->next;
insert_node(&t->n, n->prev);
}
2000-06-05 12:19:12 +00:00
/**
* tm_start - start a timer
* @t: timer
* @after: number of seconds the timer should be run after
*
* This function schedules the hook function of the timer to
* be called after @after seconds. If the timer has been already
* started, it's @expire time is replaced by the new value.
*
* You can have set the @randomize field of @t, the timeout
* will be increased by a random number of seconds chosen
* uniformly from range 0 .. @randomize.
*
* You can call tm_start() from the handler function of the timer
* to request another run of the timer. Also, you can set the @recurrent
* field to have the timer re-added automatically with the same timeout.
*/
void
tm_start(timer *t, unsigned after)
{
bird_clock_t when;
if (t->randomize)
after += random() % (t->randomize + 1);
when = now + after;
if (t->expires == when)
return;
if (t->expires)
rem_node(&t->n);
t->expires = when;
if (after <= NEAR_TIMER_LIMIT)
tm_insert_near(t);
else
{
if (!first_far_timer || first_far_timer > when)
first_far_timer = when;
add_tail(&far_timers, &t->n);
}
}
2000-06-05 12:19:12 +00:00
/**
* tm_stop - stop a timer
* @t: timer
*
* This function stops a timer. If the timer is already stopped,
* nothing happens.
*/
void
tm_stop(timer *t)
{
if (t->expires)
{
rem_node(&t->n);
t->expires = 0;
}
}
static void
tm_dump_them(char *name, list *l)
{
node *n;
timer *t;
debug("%s timers:\n", name);
WALK_LIST(n, *l)
{
t = SKIP_BACK(timer, n, n);
debug("%p ", t);
tm_dump(&t->r);
}
debug("\n");
}
void
tm_dump_all(void)
{
tm_dump_them("Near", &near_timers);
tm_dump_them("Far", &far_timers);
}
static inline time_t
tm_first_shot(void)
{
time_t x = first_far_timer;
if (!EMPTY_LIST(near_timers))
{
timer *t = SKIP_BACK(timer, n, HEAD(near_timers));
if (t->expires < x)
x = t->expires;
}
return x;
}
static void
tm_shot(void)
{
timer *t;
node *n, *m;
if (first_far_timer <= now)
{
bird_clock_t limit = now + NEAR_TIMER_LIMIT;
first_far_timer = TIME_INFINITY;
n = HEAD(far_timers);
while (m = n->next)
{
t = SKIP_BACK(timer, n, n);
if (t->expires <= limit)
{
rem_node(n);
tm_insert_near(t);
}
else if (t->expires < first_far_timer)
first_far_timer = t->expires;
n = m;
}
}
while ((n = HEAD(near_timers)) -> next)
{
int delay;
t = SKIP_BACK(timer, n, n);
if (t->expires > now)
break;
rem_node(n);
delay = t->expires - now;
t->expires = 0;
if (t->recurrent)
{
int i = t->recurrent - delay;
if (i < 0)
i = 0;
tm_start(t, i);
}
t->hook(t);
}
}
2005-02-12 22:27:55 +00:00
/**
* tm_parse_datetime - parse a date and time
* @x: datetime string
*
* tm_parse_datetime() takes a textual representation of
* a date and time (dd-mm-yyyy hh:mm:ss)
* and converts it to the corresponding value of type &bird_clock_t.
*/
bird_clock_t
tm_parse_datetime(char *x)
{
struct tm tm;
int n;
time_t t;
if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n])
return tm_parse_date(x);
tm.tm_mon--;
tm.tm_year -= 1900;
t = mktime(&tm);
if (t == (time_t) -1)
return 0;
return t;
}
2000-06-05 12:19:12 +00:00
/**
* tm_parse_date - parse a date
* @x: date string
*
* tm_parse_date() takes a textual representation of a date (dd-mm-yyyy)
* and converts it to the corresponding value of type &bird_clock_t.
*/
bird_clock_t
tm_parse_date(char *x)
{
struct tm tm;
int n;
time_t t;
if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n])
return 0;
tm.tm_mon--;
tm.tm_year -= 1900;
tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
t = mktime(&tm);
if (t == (time_t) -1)
return 0;
return t;
}
2010-02-02 23:19:24 +00:00
static void
tm_format_reltime(char *x, struct tm *tm, bird_clock_t delta)
{
2010-02-02 23:19:24 +00:00
static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2010-02-02 23:19:24 +00:00
if (delta < 20*3600)
bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min);
else if (delta < 360*86400)
bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday);
else
bsprintf(x, "%d", tm->tm_year+1900);
}
2010-02-02 23:19:24 +00:00
#include "conf/conf.h"
2000-06-05 12:19:12 +00:00
/**
* tm_format_datetime - convert date and time to textual representation
* @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
* @t: time
*
2008-11-05 21:36:49 +00:00
* This function formats the given relative time value @t to a textual
* date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
2000-06-05 12:19:12 +00:00
*/
2000-03-12 22:43:13 +00:00
void
2010-02-02 23:19:24 +00:00
tm_format_datetime(char *x, struct timeformat *fmt_spec, bird_clock_t t)
2000-03-12 22:43:13 +00:00
{
2010-02-02 23:19:24 +00:00
const char *fmt_used;
2000-03-12 22:43:13 +00:00
struct tm *tm;
2008-11-05 21:36:49 +00:00
bird_clock_t delta = now - t;
t = now_real - delta;
2000-03-12 22:43:13 +00:00
tm = localtime(&t);
2010-02-02 23:19:24 +00:00
if (fmt_spec->fmt1 == NULL)
return tm_format_reltime(x, tm, delta);
2010-02-02 23:19:24 +00:00
if ((fmt_spec->limit == 0) || (delta < fmt_spec->limit))
fmt_used = fmt_spec->fmt1;
else
2010-02-02 23:19:24 +00:00
fmt_used = fmt_spec->fmt2;
int rv = strftime(x, TM_DATETIME_BUFFER_SIZE, fmt_used, tm);
if (((rv == 0) && fmt_used[0]) || (rv == TM_DATETIME_BUFFER_SIZE))
strcpy(x, "<too-long>");
}
2000-06-05 12:19:12 +00:00
/**
* DOC: Sockets
*
* Socket resources represent network connections. Their data structure (&socket)
* contains a lot of fields defining the exact type of the socket, the local and
* remote addresses and ports, pointers to socket buffers and finally pointers to
* hook functions to be called when new data have arrived to the receive buffer
* (@rx_hook), when the contents of the transmit buffer have been transmitted
* (@tx_hook) and when an error or connection close occurs (@err_hook).
*
* Freeing of sockets from inside socket hooks is perfectly safe.
*/
1999-04-01 15:33:52 +00:00
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#endif
#ifndef SOL_IPV6
#define SOL_IPV6 IPPROTO_IPV6
#endif
static list sock_list;
static struct birdsock *current_sock;
static struct birdsock *stored_sock;
static int sock_recalc_fdsets_p;
static inline sock *
sk_next(sock *s)
{
if (!s->n.next->next)
return NULL;
else
return SKIP_BACK(sock, n, s->n.next);
}
static void
sk_alloc_bufs(sock *s)
{
if (!s->rbuf && s->rbsize)
s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize);
s->rpos = s->rbuf;
if (!s->tbuf && s->tbsize)
s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize);
s->tpos = s->ttx = s->tbuf;
}
static void
sk_free_bufs(sock *s)
{
if (s->rbuf_alloc)
{
xfree(s->rbuf_alloc);
s->rbuf = s->rbuf_alloc = NULL;
}
if (s->tbuf_alloc)
{
xfree(s->tbuf_alloc);
s->tbuf = s->tbuf_alloc = NULL;
}
}
static void
sk_free(resource *r)
{
sock *s = (sock *) r;
sk_free_bufs(s);
if (s->fd >= 0)
{
close(s->fd);
if (s == current_sock)
current_sock = sk_next(s);
if (s == stored_sock)
stored_sock = sk_next(s);
rem_node(&s->n);
sock_recalc_fdsets_p = 1;
}
}
void
sk_reallocate(sock *s)
{
sk_free_bufs(s);
sk_alloc_bufs(s);
}
static void
sk_dump(resource *r)
{
sock *s = (sock *) r;
1999-10-29 12:09:29 +00:00
static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", "UDP/MC", "IP", "IP/MC", "MAGIC", "UNIX<", "UNIX", "DEL!" };
debug("(%s, ud=%p, sa=%08x, sp=%d, da=%08x, dp=%d, tos=%d, ttl=%d, if=%s)\n",
sk_type_names[s->type],
s->data,
s->saddr,
s->sport,
s->daddr,
s->dport,
s->tos,
s->ttl,
s->iface ? s->iface->name : "none");
}
static struct resclass sk_class = {
"Socket",
sizeof(sock),
sk_free,
sk_dump,
NULL
};
2000-06-05 12:19:12 +00:00
/**
* sk_new - create a socket
* @p: pool
*
* This function creates a new socket resource. If you want to use it,
* you need to fill in all the required fields of the structure and
* call sk_open() to do the actual opening of the socket.
*/
sock *
sk_new(pool *p)
{
sock *s = ralloc(p, &sk_class);
s->pool = p;
// s->saddr = s->daddr = IPA_NONE;
s->tos = s->ttl = -1;
s->fd = -1;
return s;
}
static void
sk_insert(sock *s)
{
add_tail(&sock_list, &s->n);
sock_recalc_fdsets_p = 1;
}
#ifdef IPV6
void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
memset (sa, 0, sizeof (struct sockaddr_in6));
sa->sin6_family = AF_INET6;
sa->sin6_port = htons(port);
sa->sin6_flowinfo = 0;
#ifdef HAVE_SIN_LEN
sa->sin6_len = sizeof(struct sockaddr_in6);
#endif
set_inaddr(&sa->sin6_addr, a);
}
2009-08-27 16:25:46 +00:00
static inline void
fill_in_sockifa(sockaddr *sa, struct iface *ifa)
{
sa->sin6_scope_id = ifa ? ifa->index : 0;
}
void
get_sockaddr(struct sockaddr_in6 *sa, ip_addr *a, unsigned *port, int check)
{
if (check && sa->sin6_family != AF_INET6)
bug("get_sockaddr called for wrong address family (%d)", sa->sin6_family);
if (port)
*port = ntohs(sa->sin6_port);
memcpy(a, &sa->sin6_addr, sizeof(*a));
ipa_ntoh(*a);
}
#else
void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
memset (sa, 0, sizeof (struct sockaddr_in));
sa->sin_family = AF_INET;
sa->sin_port = htons(port);
#ifdef HAVE_SIN_LEN
sa->sin_len = sizeof(struct sockaddr_in);
#endif
set_inaddr(&sa->sin_addr, a);
}
2009-08-27 16:25:46 +00:00
static inline void
fill_in_sockifa(sockaddr *sa UNUSED, struct iface *ifa UNUSED)
2009-08-27 16:25:46 +00:00
{
}
void
get_sockaddr(struct sockaddr_in *sa, ip_addr *a, unsigned *port, int check)
{
if (check && sa->sin_family != AF_INET)
bug("get_sockaddr called for wrong address family (%d)", sa->sin_family);
if (port)
*port = ntohs(sa->sin_port);
memcpy(a, &sa->sin_addr.s_addr, sizeof(*a));
ipa_ntoh(*a);
}
#endif
static char *
sk_set_ttl_int(sock *s)
{
#ifdef IPV6
if (setsockopt(s->fd, SOL_IPV6, IPV6_UNICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
return "IPV6_UNICAST_HOPS";
#else
if (setsockopt(s->fd, SOL_IP, IP_TTL, &s->ttl, sizeof(s->ttl)) < 0)
return "IP_TTL";
#ifdef CONFIG_UNIX_DONTROUTE
int one = 1;
if (s->ttl == 1 && setsockopt(s->fd, SOL_SOCKET, SO_DONTROUTE, &one, sizeof(one)) < 0)
return "SO_DONTROUTE";
#endif
#endif
return NULL;
}
#define ERR(x) do { err = x; goto bad; } while(0)
#define WARN(x) log(L_WARN "sk_setup: %s: %m", x)
static char *
sk_setup(sock *s)
{
int fd = s->fd;
char *err;
if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0)
ERR("fcntl(O_NONBLOCK)");
1999-10-29 12:09:29 +00:00
if (s->type == SK_UNIX)
return NULL;
#ifndef IPV6
if ((s->tos >= 0) && setsockopt(fd, SOL_IP, IP_TOS, &s->tos, sizeof(s->tos)) < 0)
WARN("IP_TOS");
#endif
#ifdef IPV6
int v = 1;
if ((s->flags & SKF_V6ONLY) && setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &v, sizeof(v)) < 0)
WARN("IPV6_V6ONLY");
#endif
if (s->ttl >= 0)
err = sk_set_ttl_int(s);
else
err = NULL;
bad:
return err;
}
/**
* sk_set_ttl - set TTL for given socket.
* @s: socket
* @ttl: TTL value
*
* Set TTL for already opened connections when TTL was not set before.
* Useful for accepted connections when different ones should have
* different TTL.
*
* Result: 0 for success, -1 for an error.
*/
int
sk_set_ttl(sock *s, int ttl)
{
char *err;
s->ttl = ttl;
if (err = sk_set_ttl_int(s))
log(L_ERR "sk_set_ttl: %s: %m", err);
return (err ? -1 : 0);
}
/**
* sk_set_md5_auth - add / remove MD5 security association for given socket.
* @s: socket
* @a: IP address of the other side
* @passwd: password used for MD5 authentication
*
* In TCP MD5 handling code in kernel, there is a set of pairs
* (address, password) used to choose password according to
* address of the other side. This function is useful for
* listening socket, for active sockets it is enough to set
* s->password field.
*
* When called with passwd != NULL, the new pair is added,
* When called with passwd == NULL, the existing pair is removed.
*
* Result: 0 for success, -1 for an error.
*/
int
sk_set_md5_auth(sock *s, ip_addr a, char *passwd)
{
sockaddr sa;
fill_in_sockaddr(&sa, a, 0);
return sk_set_md5_auth_int(s, &sa, passwd);
}
int
sk_set_broadcast(sock *s, int enable)
{
if (setsockopt(s->fd, SOL_SOCKET, SO_BROADCAST, &enable, sizeof(enable)) < 0)
2009-11-09 22:22:53 +00:00
{
log(L_ERR "sk_set_broadcast: SO_BROADCAST: %m");
return -1;
}
return 0;
}
#ifdef IPV6
2009-11-09 22:22:53 +00:00
int
sk_set_ipv6_checksum(sock *s, int offset)
{
if (setsockopt(s->fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset)) < 0)
{
log(L_ERR "sk_set_ipv6_checksum: IPV6_CHECKSUM: %m");
return -1;
}
return 0;
}
int
sk_setup_multicast(sock *s)
{
char *err;
int zero = 0;
int index;
ASSERT(s->iface && s->iface->addr);
index = s->iface->index;
if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
ERR("IPV6_MULTICAST_HOPS");
if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &zero, sizeof(zero)) < 0)
ERR("IPV6_MULTICAST_LOOP");
if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_IF, &index, sizeof(index)) < 0)
ERR("IPV6_MULTICAST_IF");
return 0;
bad:
log(L_ERR "sk_setup_multicast: %s: %m", err);
return -1;
}
int
sk_join_group(sock *s, ip_addr maddr)
{
struct ipv6_mreq mreq;
set_inaddr(&mreq.ipv6mr_multiaddr, maddr);
#ifdef CONFIG_IPV6_GLIBC_20
mreq.ipv6mr_ifindex = s->iface->index;
#else
mreq.ipv6mr_interface = s->iface->index;
#endif
2010-01-06 22:20:43 +00:00
if (setsockopt(s->fd, SOL_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq)) < 0)
{
2010-01-06 22:20:43 +00:00
log(L_ERR "sk_join_group: IPV6_JOIN_GROUP: %m");
return -1;
}
return 0;
}
int
sk_leave_group(sock *s, ip_addr maddr)
{
struct ipv6_mreq mreq;
set_inaddr(&mreq.ipv6mr_multiaddr, maddr);
#ifdef CONFIG_IPV6_GLIBC_20
mreq.ipv6mr_ifindex = s->iface->index;
#else
mreq.ipv6mr_interface = s->iface->index;
#endif
2010-01-06 22:20:43 +00:00
if (setsockopt(s->fd, SOL_IPV6, IPV6_LEAVE_GROUP, &mreq, sizeof(mreq)) < 0)
{
2010-01-06 22:20:43 +00:00
log(L_ERR "sk_leave_group: IPV6_LEAVE_GROUP: %m");
return -1;
}
return 0;
}
#else /* IPV4 */
int
sk_setup_multicast(sock *s)
{
char *err;
ASSERT(s->iface && s->iface->addr);
if (err = sysio_setup_multicast(s))
{
log(L_ERR "sk_setup_multicast: %s: %m", err);
return -1;
}
return 0;
}
int
sk_join_group(sock *s, ip_addr maddr)
{
char *err;
if (err = sysio_join_group(s, maddr))
{
log(L_ERR "sk_join_group: %s: %m", err);
return -1;
}
return 0;
}
int
sk_leave_group(sock *s, ip_addr maddr)
{
char *err;
if (err = sysio_leave_group(s, maddr))
{
log(L_ERR "sk_leave_group: %s: %m", err);
return -1;
}
return 0;
}
#endif
1999-10-29 12:09:29 +00:00
static void
sk_tcp_connected(sock *s)
{
s->type = SK_TCP;
sk_alloc_bufs(s);
s->tx_hook(s);
}
1999-10-29 12:09:29 +00:00
static int
sk_passive_connected(sock *s, struct sockaddr *sa, int al, int type)
{
int fd = accept(s->fd, sa, &al);
if (fd >= 0)
{
sock *t = sk_new(s->pool);
char *err;
t->type = type;
t->fd = fd;
t->ttl = s->ttl;
t->tos = s->tos;
t->rbsize = s->rbsize;
t->tbsize = s->tbsize;
if (type == SK_TCP)
2010-01-03 11:17:52 +00:00
{
sockaddr lsa;
int lsa_len = sizeof(lsa);
if (getsockname(fd, (struct sockaddr *) &lsa, &lsa_len) == 0)
get_sockaddr(&lsa, &t->saddr, &t->sport, 1);
get_sockaddr((sockaddr *) sa, &t->daddr, &t->dport, 1);
}
sk_insert(t);
1999-10-29 12:09:29 +00:00
if (err = sk_setup(t))
{
log(L_ERR "Incoming connection: %s: %m", err);
rfree(t);
return 1;
1999-10-29 12:09:29 +00:00
}
sk_alloc_bufs(t);
s->rx_hook(t, 0);
1999-10-29 12:09:29 +00:00
return 1;
}
else if (errno != EINTR && errno != EAGAIN)
{
s->err_hook(s, errno);
1999-10-29 12:09:29 +00:00
}
return 0;
}
2000-06-05 12:19:12 +00:00
/**
* sk_open - open a socket
* @s: socket
*
* This function takes a socket resource created by sk_new() and
* initialized by the user and binds a corresponding network connection
* to it.
*
* Result: 0 for success, -1 for an error.
*/
int
sk_open(sock *s)
{
int fd;
sockaddr sa;
int one = 1;
int type = s->type;
int has_src = ipa_nonzero(s->saddr) || s->sport;
char *err;
switch (type)
{
case SK_TCP_ACTIVE:
s->ttx = ""; /* Force s->ttx != s->tpos */
/* Fall thru */
case SK_TCP_PASSIVE:
fd = socket(BIRD_PF, SOCK_STREAM, IPPROTO_TCP);
break;
case SK_UDP:
fd = socket(BIRD_PF, SOCK_DGRAM, IPPROTO_UDP);
break;
case SK_IP:
fd = socket(BIRD_PF, SOCK_RAW, s->dport);
break;
case SK_MAGIC:
fd = s->fd;
break;
default:
bug("sk_open() called for invalid sock type %d", type);
}
if (fd < 0)
die("sk_open: socket: %m");
s->fd = fd;
if (err = sk_setup(s))
goto bad;
if (has_src)
{
int port;
if (type == SK_IP)
port = 0;
else
{
port = s->sport;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
ERR("SO_REUSEADDR");
}
fill_in_sockaddr(&sa, s->saddr, port);
2009-08-27 16:25:46 +00:00
fill_in_sockifa(&sa, s->iface);
if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
ERR("bind");
}
fill_in_sockaddr(&sa, s->daddr, s->dport);
if (s->password)
{
int rv = sk_set_md5_auth_int(s, &sa, s->password);
if (rv < 0)
goto bad_no_log;
}
switch (type)
{
case SK_TCP_ACTIVE:
if (connect(fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0)
sk_tcp_connected(s);
2000-05-08 12:09:10 +00:00
else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS &&
errno != ECONNREFUSED && errno != EHOSTUNREACH)
ERR("connect");
break;
case SK_TCP_PASSIVE:
if (listen(fd, 8))
ERR("listen");
break;
case SK_MAGIC:
break;
default:
sk_alloc_bufs(s);
#ifdef IPV6
#ifdef IPV6_MTU_DISCOVER
{
int dont = IPV6_PMTUDISC_DONT;
if (setsockopt(fd, SOL_IPV6, IPV6_MTU_DISCOVER, &dont, sizeof(dont)) < 0)
ERR("IPV6_MTU_DISCOVER");
}
#endif
#else
#ifdef IP_PMTUDISC
{
int dont = IP_PMTUDISC_DONT;
if (setsockopt(fd, SOL_IP, IP_PMTUDISC, &dont, sizeof(dont)) < 0)
ERR("IP_PMTUDISC");
}
#endif
#endif
}
sk_insert(s);
return 0;
bad:
log(L_ERR "sk_open: %s: %m", err);
bad_no_log:
close(fd);
s->fd = -1;
return -1;
}
void
1999-10-29 12:09:29 +00:00
sk_open_unix(sock *s, char *name)
{
int fd;
struct sockaddr_un sa;
char *err;
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0)
ERR("socket");
1999-10-29 12:09:29 +00:00
s->fd = fd;
if (err = sk_setup(s))
goto bad;
unlink(name);
2008-10-26 22:55:38 +00:00
/* Path length checked in test_old_bird() */
1999-10-29 12:09:29 +00:00
sa.sun_family = AF_UNIX;
2008-08-25 12:06:20 +00:00
strcpy(sa.sun_path, name);
if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0)
1999-10-29 12:09:29 +00:00
ERR("bind");
if (listen(fd, 8))
ERR("listen");
sk_insert(s);
return;
1999-10-29 12:09:29 +00:00
bad:
1999-10-29 12:09:29 +00:00
log(L_ERR "sk_open_unix: %s: %m", err);
die("Unable to create control socket %s", name);
1999-10-29 12:09:29 +00:00
}
static int
sk_maybe_write(sock *s)
{
int e;
switch (s->type)
{
case SK_TCP:
case SK_MAGIC:
1999-10-29 12:09:29 +00:00
case SK_UNIX:
while (s->ttx != s->tpos)
{
e = write(s->fd, s->ttx, s->tpos - s->ttx);
if (e < 0)
{
if (errno != EINTR && errno != EAGAIN)
{
s->ttx = s->tpos; /* empty tx buffer */
s->err_hook(s, errno);
return -1;
}
return 0;
}
s->ttx += e;
}
s->ttx = s->tpos = s->tbuf;
return 1;
case SK_UDP:
case SK_IP:
{
sockaddr sa;
if (s->tbuf == s->tpos)
return 1;
2009-08-27 16:25:46 +00:00
fill_in_sockaddr(&sa, s->faddr, s->fport);
fill_in_sockifa(&sa, s->iface);
e = sendto(s->fd, s->tbuf, s->tpos - s->tbuf, 0, (struct sockaddr *) &sa, sizeof(sa));
if (e < 0)
{
if (errno != EINTR && errno != EAGAIN)
{
s->ttx = s->tpos; /* empty tx buffer */
s->err_hook(s, errno);
return -1;
}
return 0;
}
s->tpos = s->tbuf;
return 1;
}
default:
1998-12-20 14:27:37 +00:00
bug("sk_maybe_write: unknown socket type %d", s->type);
}
}
int
sk_rx_ready(sock *s)
{
fd_set rd, wr;
struct timeval timo;
int rv;
FD_ZERO(&rd);
FD_ZERO(&wr);
FD_SET(s->fd, &rd);
timo.tv_sec = 0;
timo.tv_usec = 0;
redo:
rv = select(s->fd+1, &rd, &wr, NULL, &timo);
if ((rv < 0) && (errno == EINTR || errno == EAGAIN))
goto redo;
return rv;
}
2000-06-05 12:19:12 +00:00
/**
* sk_send - send data to a socket
* @s: socket
* @len: number of bytes to send
*
* This function sends @len bytes of data prepared in the
* transmit buffer of the socket @s to the network connection.
* If the packet can be sent immediately, it does so and returns
* 1, else it queues the packet for later processing, returns 0
* and calls the @tx_hook of the socket when the tranmission
* takes place.
*/
int
sk_send(sock *s, unsigned len)
{
s->faddr = s->daddr;
s->fport = s->dport;
s->ttx = s->tbuf;
s->tpos = s->tbuf + len;
return sk_maybe_write(s);
}
2000-06-05 12:19:12 +00:00
/**
* sk_send_to - send data to a specific destination
* @s: socket
* @len: number of bytes to send
* @addr: IP address to send the packet to
* @port: port to send the packet to
*
2000-06-07 12:29:08 +00:00
* This is a sk_send() replacement for connection-less packet sockets
2000-06-05 12:19:12 +00:00
* which allows destination of the packet to be chosen dynamically.
*/
int
sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port)
{
s->faddr = addr;
s->fport = port;
s->ttx = s->tbuf;
s->tpos = s->tbuf + len;
return sk_maybe_write(s);
}
static int
sk_read(sock *s)
{
switch (s->type)
{
case SK_TCP_PASSIVE:
{
sockaddr sa;
1999-10-29 12:09:29 +00:00
return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_TCP);
}
case SK_UNIX_PASSIVE:
{
struct sockaddr_un sa;
return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_UNIX);
}
case SK_TCP:
1999-10-29 12:09:29 +00:00
case SK_UNIX:
{
int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos);
if (c < 0)
{
if (errno != EINTR && errno != EAGAIN)
s->err_hook(s, errno);
}
else if (!c)
s->err_hook(s, 0);
else
{
s->rpos += c;
if (s->rx_hook(s, s->rpos - s->rbuf))
{
/* We need to be careful since the socket could have been deleted by the hook */
if (current_sock == s)
s->rpos = s->rbuf;
}
return 1;
}
return 0;
}
case SK_MAGIC:
return s->rx_hook(s, 0);
default:
{
sockaddr sa;
int al = sizeof(sa);
int e = recvfrom(s->fd, s->rbuf, s->rbsize, 0, (struct sockaddr *) &sa, &al);
if (e < 0)
{
if (errno != EINTR && errno != EAGAIN)
s->err_hook(s, errno);
return 0;
}
s->rpos = s->rbuf + e;
get_sockaddr(&sa, &s->faddr, &s->fport, 1);
s->rx_hook(s, e);
return 1;
}
}
}
static int
sk_write(sock *s)
{
switch (s->type)
{
case SK_TCP_ACTIVE:
{
sockaddr sa;
fill_in_sockaddr(&sa, s->daddr, s->dport);
2004-06-18 12:54:53 +00:00
if (connect(s->fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0 || errno == EISCONN)
sk_tcp_connected(s);
else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS)
s->err_hook(s, errno);
return 0;
}
default:
if (s->ttx != s->tpos && sk_maybe_write(s) > 0)
{
s->tx_hook(s);
return 1;
}
return 0;
}
}
void
sk_dump_all(void)
{
node *n;
sock *s;
debug("Open sockets:\n");
WALK_LIST(n, sock_list)
{
s = SKIP_BACK(sock, n, n);
debug("%p ", s);
sk_dump(&s->r);
}
debug("\n");
}
#undef ERR
#undef WARN
/*
* Main I/O Loop
*/
volatile int async_config_flag; /* Asynchronous reconfiguration/dump scheduled */
volatile int async_dump_flag;
void
io_init(void)
{
init_list(&near_timers);
init_list(&far_timers);
init_list(&sock_list);
init_list(&global_event_list);
krt_io_init();
2008-11-05 21:36:49 +00:00
init_times();
update_times();
srandom((int) now_real);
}
static int short_loops = 0;
#define SHORT_LOOP_MAX 10
void
io_loop(void)
{
fd_set rd, wr;
struct timeval timo;
time_t tout;
int hi, events;
sock *s;
node *n;
sock_recalc_fdsets_p = 1;
for(;;)
{
events = ev_run_list(&global_event_list);
2008-11-05 21:36:49 +00:00
update_times();
tout = tm_first_shot();
if (tout <= now)
{
tm_shot();
continue;
}
timo.tv_sec = events ? 0 : tout - now;
timo.tv_usec = 0;
if (sock_recalc_fdsets_p)
{
sock_recalc_fdsets_p = 0;
FD_ZERO(&rd);
FD_ZERO(&wr);
}
hi = 0;
WALK_LIST(n, sock_list)
{
s = SKIP_BACK(sock, n, n);
if (s->rx_hook)
{
FD_SET(s->fd, &rd);
if (s->fd > hi)
hi = s->fd;
}
else
FD_CLR(s->fd, &rd);
if (s->tx_hook && s->ttx != s->tpos)
{
FD_SET(s->fd, &wr);
if (s->fd > hi)
hi = s->fd;
}
else
FD_CLR(s->fd, &wr);
}
/*
* Yes, this is racy. But even if the signal comes before this test
* and entering select(), it gets caught on the next timer tick.
*/
if (async_config_flag)
{
async_config();
async_config_flag = 0;
continue;
}
if (async_dump_flag)
{
async_dump();
async_dump_flag = 0;
continue;
}
if (async_shutdown_flag)
{
async_shutdown();
async_shutdown_flag = 0;
continue;
}
/* And finally enter select() to find active sockets */
hi = select(hi+1, &rd, &wr, NULL, &timo);
if (hi < 0)
{
if (errno == EINTR || errno == EAGAIN)
continue;
die("select: %m");
}
if (hi)
{
/* guaranteed to be non-empty */
current_sock = SKIP_BACK(sock, n, HEAD(sock_list));
while (current_sock)
{
sock *s = current_sock;
int e;
int steps;
steps = MAX_STEPS;
if ((s->type >= SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
do
{
steps--;
e = sk_read(s);
if (s != current_sock)
goto next;
}
while (e && s->rx_hook && steps);
steps = MAX_STEPS;
if (FD_ISSET(s->fd, &wr))
do
{
steps--;
e = sk_write(s);
if (s != current_sock)
goto next;
}
while (e && steps);
current_sock = sk_next(s);
next: ;
}
short_loops++;
if (events && (short_loops < SHORT_LOOP_MAX))
continue;
short_loops = 0;
int count = 0;
current_sock = stored_sock;
if (current_sock == NULL)
current_sock = SKIP_BACK(sock, n, HEAD(sock_list));
while (current_sock && count < MAX_RX_STEPS)
{
sock *s = current_sock;
int e;
if ((s->type < SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
{
count++;
e = sk_read(s);
if (s != current_sock)
goto next2;
}
current_sock = sk_next(s);
next2: ;
}
stored_sock = current_sock;
}
}
}
2004-06-06 17:05:25 +00:00
void
test_old_bird(char *path)
{
int fd;
struct sockaddr_un sa;
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0)
die("Cannot create socket: %m");
if (strlen(path) >= sizeof(sa.sun_path))
die("Socket path too long");
2004-06-06 17:05:25 +00:00
bzero(&sa, sizeof(sa));
sa.sun_family = AF_UNIX;
strcpy(sa.sun_path, path);
if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0)
die("I found another BIRD running.");
close(fd);
}