2015-04-23 13:18:27 +00:00
|
|
|
/*
|
|
|
|
* BIRD -- SHA256 and SHA224 Hash Functions
|
|
|
|
*
|
|
|
|
* (c) 2015 CZ.NIC z.s.p.o.
|
|
|
|
*
|
|
|
|
* Based on the code from libgcrypt-1.6.0, which is
|
|
|
|
* (c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc.
|
|
|
|
*
|
|
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <netinet/in.h>
|
|
|
|
|
|
|
|
#include "lib/sha256.h"
|
|
|
|
#include "lib/unaligned.h"
|
|
|
|
|
|
|
|
void
|
|
|
|
sha256_init(sha256_context *ctx)
|
|
|
|
{
|
|
|
|
ctx->h0 = 0x6a09e667;
|
|
|
|
ctx->h1 = 0xbb67ae85;
|
|
|
|
ctx->h2 = 0x3c6ef372;
|
|
|
|
ctx->h3 = 0xa54ff53a;
|
|
|
|
ctx->h4 = 0x510e527f;
|
|
|
|
ctx->h5 = 0x9b05688c;
|
|
|
|
ctx->h6 = 0x1f83d9ab;
|
|
|
|
ctx->h7 = 0x5be0cd19;
|
|
|
|
|
|
|
|
ctx->nblocks = 0;
|
|
|
|
ctx->nblocks_high = 0;
|
|
|
|
ctx->count = 0;
|
2015-04-28 13:02:37 +00:00
|
|
|
ctx->blocksize = 64;
|
2015-04-23 13:18:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
sha224_init(sha224_context *ctx)
|
|
|
|
{
|
|
|
|
ctx->h0 = 0xc1059ed8;
|
|
|
|
ctx->h1 = 0x367cd507;
|
|
|
|
ctx->h2 = 0x3070dd17;
|
|
|
|
ctx->h3 = 0xf70e5939;
|
|
|
|
ctx->h4 = 0xffc00b31;
|
|
|
|
ctx->h5 = 0x68581511;
|
|
|
|
ctx->h6 = 0x64f98fa7;
|
|
|
|
ctx->h7 = 0xbefa4fa4;
|
|
|
|
|
|
|
|
ctx->nblocks = 0;
|
|
|
|
ctx->nblocks_high = 0;
|
|
|
|
ctx->count = 0;
|
2015-04-28 13:02:37 +00:00
|
|
|
ctx->blocksize = 64;
|
2015-04-23 13:18:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* (4.2) same as SHA-1's F1. */
|
|
|
|
static inline u32
|
|
|
|
f1(u32 x, u32 y, u32 z)
|
|
|
|
{
|
|
|
|
return (z ^ (x & (y ^ z)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* (4.3) same as SHA-1's F3 */
|
|
|
|
static inline u32
|
|
|
|
f3(u32 x, u32 y, u32 z)
|
|
|
|
{
|
|
|
|
return ((x & y) | (z & (x|y)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Bitwise rotation of an unsigned int to the right */
|
|
|
|
static inline u32 ror(u32 x, int n)
|
|
|
|
{
|
|
|
|
return ( (x >> (n&(32-1))) | (x << ((32-n)&(32-1))) );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* (4.4) */
|
|
|
|
static inline u32
|
|
|
|
sum0(u32 x)
|
|
|
|
{
|
|
|
|
return (ror(x, 2) ^ ror(x, 13) ^ ror(x, 22));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* (4.5) */
|
|
|
|
static inline u32
|
|
|
|
sum1(u32 x)
|
|
|
|
{
|
|
|
|
return (ror(x, 6) ^ ror(x, 11) ^ ror(x, 25));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Transform the message X which consists of 16 32-bit-words. See FIPS
|
|
|
|
180-2 for details. */
|
|
|
|
#define S0(x) (ror((x), 7) ^ ror((x), 18) ^ ((x) >> 3)) /* (4.6) */
|
|
|
|
#define S1(x) (ror((x), 17) ^ ror((x), 19) ^ ((x) >> 10)) /* (4.7) */
|
|
|
|
#define R(a,b,c,d,e,f,g,h,k,w) \
|
|
|
|
do \
|
|
|
|
{ \
|
|
|
|
t1 = (h) + sum1((e)) + f1((e),(f),(g)) + (k) + (w); \
|
|
|
|
t2 = sum0((a)) + f3((a),(b),(c)); \
|
|
|
|
h = g; \
|
|
|
|
g = f; \
|
|
|
|
f = e; \
|
|
|
|
e = d + t1; \
|
|
|
|
d = c; \
|
|
|
|
c = b; \
|
|
|
|
b = a; \
|
|
|
|
a = t1 + t2; \
|
|
|
|
} while (0)
|
|
|
|
|
2015-04-28 08:05:25 +00:00
|
|
|
/*
|
|
|
|
The SHA-256 core: Transform the message X which consists of 16
|
|
|
|
32-bit-words. See FIPS 180-2 for details.
|
|
|
|
*/
|
2015-04-23 13:18:27 +00:00
|
|
|
static unsigned int
|
2015-04-28 13:02:37 +00:00
|
|
|
sha256_transform_block(sha256_context *ctx, const unsigned char *data)
|
2015-04-23 13:18:27 +00:00
|
|
|
{
|
|
|
|
static const u32 K[64] = {
|
|
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
|
|
};
|
|
|
|
|
|
|
|
u32 a,b,c,d,e,f,g,h,t1,t2;
|
|
|
|
u32 w[64];
|
|
|
|
int i;
|
|
|
|
|
2015-04-28 08:05:25 +00:00
|
|
|
a = ctx->h0;
|
|
|
|
b = ctx->h1;
|
|
|
|
c = ctx->h2;
|
|
|
|
d = ctx->h3;
|
|
|
|
e = ctx->h4;
|
|
|
|
f = ctx->h5;
|
|
|
|
g = ctx->h6;
|
|
|
|
h = ctx->h7;
|
2015-04-23 13:18:27 +00:00
|
|
|
|
|
|
|
for (i = 0; i < 16; i++)
|
|
|
|
w[i] = get_u32(data + i * 4);
|
|
|
|
for (; i < 64; i++)
|
|
|
|
w[i] = S1(w[i-2]) + w[i-7] + S0(w[i-15]) + w[i-16];
|
|
|
|
|
|
|
|
for (i = 0; i < 64;)
|
|
|
|
{
|
|
|
|
t1 = h + sum1(e) + f1(e, f, g) + K[i] + w[i];
|
|
|
|
t2 = sum0 (a) + f3(a, b, c);
|
|
|
|
d += t1;
|
|
|
|
h = t1 + t2;
|
|
|
|
|
|
|
|
t1 = g + sum1(d) + f1(d, e, f) + K[i+1] + w[i+1];
|
|
|
|
t2 = sum0 (h) + f3(h, a, b);
|
|
|
|
c += t1;
|
|
|
|
g = t1 + t2;
|
|
|
|
|
|
|
|
t1 = f + sum1(c) + f1(c, d, e) + K[i+2] + w[i+2];
|
|
|
|
t2 = sum0 (g) + f3(g, h, a);
|
|
|
|
b += t1;
|
|
|
|
f = t1 + t2;
|
|
|
|
|
|
|
|
t1 = e + sum1(b) + f1(b, c, d) + K[i+3] + w[i+3];
|
|
|
|
t2 = sum0 (f) + f3(f, g, h);
|
|
|
|
a += t1;
|
|
|
|
e = t1 + t2;
|
|
|
|
|
|
|
|
t1 = d + sum1(a) + f1(a, b, c) + K[i+4] + w[i+4];
|
|
|
|
t2 = sum0 (e) + f3(e, f, g);
|
|
|
|
h += t1;
|
|
|
|
d = t1 + t2;
|
|
|
|
|
|
|
|
t1 = c + sum1(h) + f1(h, a, b) + K[i+5] + w[i+5];
|
|
|
|
t2 = sum0 (d) + f3(d, e, f);
|
|
|
|
g += t1;
|
|
|
|
c = t1 + t2;
|
|
|
|
|
|
|
|
t1 = b + sum1(g) + f1(g, h, a) + K[i+6] + w[i+6];
|
|
|
|
t2 = sum0 (c) + f3(c, d, e);
|
|
|
|
f += t1;
|
|
|
|
b = t1 + t2;
|
|
|
|
|
|
|
|
t1 = a + sum1(f) + f1(f, g, h) + K[i+7] + w[i+7];
|
|
|
|
t2 = sum0 (b) + f3(b, c, d);
|
|
|
|
e += t1;
|
|
|
|
a = t1 + t2;
|
|
|
|
|
|
|
|
i += 8;
|
|
|
|
}
|
|
|
|
|
2015-04-28 08:05:25 +00:00
|
|
|
ctx->h0 += a;
|
|
|
|
ctx->h1 += b;
|
|
|
|
ctx->h2 += c;
|
|
|
|
ctx->h3 += d;
|
|
|
|
ctx->h4 += e;
|
|
|
|
ctx->h5 += f;
|
|
|
|
ctx->h6 += g;
|
|
|
|
ctx->h7 += h;
|
2015-04-23 13:18:27 +00:00
|
|
|
|
|
|
|
return /*burn_stack*/ 74*4+32;
|
|
|
|
}
|
|
|
|
#undef S0
|
|
|
|
#undef S1
|
|
|
|
#undef R
|
|
|
|
|
|
|
|
static unsigned int
|
|
|
|
sha256_transform(void *ctx, const unsigned char *data, size_t nblks)
|
|
|
|
{
|
|
|
|
sha256_context *hd = ctx;
|
|
|
|
unsigned int burn;
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
2015-04-28 13:02:37 +00:00
|
|
|
burn = sha256_transform_block(hd, data);
|
2015-04-23 13:18:27 +00:00
|
|
|
data += 64;
|
|
|
|
}
|
|
|
|
while (--nblks);
|
|
|
|
|
|
|
|
return burn;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Common function to write a chunk of data to the transform function
|
|
|
|
of a hash algorithm. Note that the use of the term "block" does
|
|
|
|
not imply a fixed size block. Note that we explicitly allow to use
|
|
|
|
this function after the context has been finalized; the result does
|
|
|
|
not have any meaning but writing after finalize is sometimes
|
|
|
|
helpful to mitigate timing attacks. */
|
|
|
|
void
|
|
|
|
sha256_update(sha256_context *ctx, const byte *in_buf, size_t in_len)
|
|
|
|
{
|
2015-04-28 13:02:37 +00:00
|
|
|
const unsigned int blocksize = ctx->blocksize;
|
2015-04-23 13:18:27 +00:00
|
|
|
size_t inblocks;
|
|
|
|
|
|
|
|
if (sizeof(ctx->buf) < blocksize)
|
|
|
|
debug("BUG: in file %s at line %d", __FILE__ , __LINE__);
|
|
|
|
|
|
|
|
if (ctx->count == blocksize) /* Flush the buffer. */
|
|
|
|
{
|
2015-04-28 13:02:37 +00:00
|
|
|
sha256_transform(ctx, ctx->buf, 1);
|
2015-04-23 13:18:27 +00:00
|
|
|
ctx->count = 0;
|
|
|
|
if (!++ctx->nblocks)
|
|
|
|
ctx->nblocks_high++;
|
|
|
|
}
|
|
|
|
if (!in_buf)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (ctx->count)
|
|
|
|
{
|
|
|
|
for (; in_len && ctx->count < blocksize; in_len--)
|
|
|
|
ctx->buf[ctx->count++] = *in_buf++;
|
|
|
|
sha256_update(ctx, NULL, 0);
|
|
|
|
if (!in_len)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (in_len >= blocksize)
|
|
|
|
{
|
|
|
|
inblocks = in_len / blocksize;
|
2015-04-28 13:02:37 +00:00
|
|
|
sha256_transform(ctx, in_buf, inblocks);
|
2015-04-23 13:18:27 +00:00
|
|
|
ctx->count = 0;
|
|
|
|
ctx->nblocks_high += (ctx->nblocks + inblocks < inblocks);
|
|
|
|
ctx->nblocks += inblocks;
|
|
|
|
in_len -= inblocks * blocksize;
|
|
|
|
in_buf += inblocks * blocksize;
|
|
|
|
}
|
|
|
|
for (; in_len && ctx->count < blocksize; in_len--)
|
|
|
|
ctx->buf[ctx->count++] = *in_buf++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
The routine finally terminates the computation and returns the
|
|
|
|
digest. The handle is prepared for a new cycle, but adding bytes
|
|
|
|
to the handle will the destroy the returned buffer. Returns: 32
|
|
|
|
bytes with the message the digest. */
|
|
|
|
byte*
|
|
|
|
sha256_final(sha256_context *ctx)
|
|
|
|
{
|
|
|
|
u32 t, th, msb, lsb;
|
|
|
|
byte *p;
|
|
|
|
|
|
|
|
sha256_update(ctx, NULL, 0); /* flush */;
|
|
|
|
|
|
|
|
t = ctx->nblocks;
|
|
|
|
if (sizeof t == sizeof ctx->nblocks)
|
|
|
|
th = ctx->nblocks_high;
|
|
|
|
else
|
|
|
|
th = ctx->nblocks >> 32;
|
|
|
|
|
|
|
|
/* multiply by 64 to make a byte count */
|
|
|
|
lsb = t << 6;
|
|
|
|
msb = (th << 6) | (t >> 26);
|
|
|
|
/* add the count */
|
|
|
|
t = lsb;
|
|
|
|
if ((lsb += ctx->count) < t)
|
|
|
|
msb++;
|
|
|
|
/* multiply by 8 to make a bit count */
|
|
|
|
t = lsb;
|
|
|
|
lsb <<= 3;
|
|
|
|
msb <<= 3;
|
|
|
|
msb |= t >> 29;
|
|
|
|
|
|
|
|
if (ctx->count < 56)
|
|
|
|
{ /* enough room */
|
|
|
|
ctx->buf[ctx->count++] = 0x80; /* pad */
|
|
|
|
while (ctx->count < 56)
|
|
|
|
ctx->buf[ctx->count++] = 0; /* pad */
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{ /* need one extra block */
|
|
|
|
ctx->buf[ctx->count++] = 0x80; /* pad character */
|
|
|
|
while (ctx->count < 64)
|
|
|
|
ctx->buf[ctx->count++] = 0;
|
|
|
|
sha256_update(ctx, NULL, 0); /* flush */;
|
|
|
|
memset (ctx->buf, 0, 56 ); /* fill next block with zeroes */
|
|
|
|
}
|
|
|
|
/* append the 64 bit count */
|
|
|
|
put_u32(ctx->buf + 56, msb);
|
|
|
|
put_u32(ctx->buf + 60, lsb);
|
2015-04-28 13:02:37 +00:00
|
|
|
sha256_transform(ctx, ctx->buf, 1);
|
2015-04-23 13:18:27 +00:00
|
|
|
|
|
|
|
p = ctx->buf;
|
|
|
|
|
|
|
|
#define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0)
|
|
|
|
X(0);
|
|
|
|
X(1);
|
|
|
|
X(2);
|
|
|
|
X(3);
|
|
|
|
X(4);
|
|
|
|
X(5);
|
|
|
|
X(6);
|
|
|
|
X(7);
|
|
|
|
#undef X
|
|
|
|
|
|
|
|
return ctx->buf;
|
|
|
|
}
|
2015-04-28 08:05:25 +00:00
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* HMAC
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Create a new context. On error NULL is returned and errno is set
|
|
|
|
appropriately. If KEY is given the function computes HMAC using
|
|
|
|
this key; with KEY given as NULL, a plain SHA-256 digest is
|
|
|
|
computed. */
|
|
|
|
void
|
|
|
|
sha256_hmac_init(sha256_hmac_context *ctx, const void *key, size_t keylen)
|
|
|
|
{
|
|
|
|
sha256_init(&ctx->ctx);
|
|
|
|
|
|
|
|
ctx->finalized = 0;
|
|
|
|
ctx->use_hmac = 0;
|
|
|
|
|
|
|
|
if (key)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
unsigned char ipad[64];
|
|
|
|
|
|
|
|
memset(ipad, 0, 64);
|
|
|
|
memset(ctx->opad, 0, 64);
|
|
|
|
if (keylen <= 64)
|
|
|
|
{
|
|
|
|
memcpy(ipad, key, keylen);
|
|
|
|
memcpy(ctx->opad, key, keylen);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sha256_hmac_context tmp_ctx;
|
|
|
|
|
|
|
|
sha256_hmac_init(&tmp_ctx, NULL, 0);
|
|
|
|
sha256_hmac_update(&tmp_ctx, key, keylen);
|
|
|
|
sha256_final(&tmp_ctx.ctx);
|
|
|
|
memcpy(ipad, tmp_ctx.ctx.buf, 32);
|
|
|
|
memcpy(ctx->opad, tmp_ctx.ctx.buf, 32);
|
|
|
|
}
|
|
|
|
for(i=0; i < 64; i++)
|
|
|
|
{
|
|
|
|
ipad[i] ^= 0x36;
|
|
|
|
ctx->opad[i] ^= 0x5c;
|
|
|
|
}
|
|
|
|
ctx->use_hmac = 1;
|
|
|
|
sha256_hmac_update(ctx, ipad, 64);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-28 10:43:03 +00:00
|
|
|
void sha224_hmac_init(sha224_hmac_context *ctx, const void *key, size_t keylen)
|
|
|
|
{
|
|
|
|
sha224_init(&ctx->ctx);
|
|
|
|
|
|
|
|
ctx->finalized = 0;
|
|
|
|
ctx->use_hmac = 0;
|
|
|
|
|
|
|
|
if (key)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
unsigned char ipad[64];
|
|
|
|
|
|
|
|
memset(ipad, 0, 64);
|
|
|
|
memset(ctx->opad, 0, 64);
|
|
|
|
if (keylen <= 64)
|
|
|
|
{
|
|
|
|
memcpy(ipad, key, keylen);
|
|
|
|
memcpy(ctx->opad, key, keylen);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sha224_hmac_context tmp_ctx;
|
|
|
|
|
|
|
|
sha224_hmac_init(&tmp_ctx, NULL, 0);
|
|
|
|
sha224_hmac_update(&tmp_ctx, key, keylen);
|
|
|
|
sha224_final(&tmp_ctx.ctx);
|
|
|
|
memcpy(ipad, tmp_ctx.ctx.buf, 32);
|
|
|
|
memcpy(ctx->opad, tmp_ctx.ctx.buf, 32);
|
|
|
|
}
|
|
|
|
for(i=0; i < 64; i++)
|
|
|
|
{
|
|
|
|
ipad[i] ^= 0x36;
|
|
|
|
ctx->opad[i] ^= 0x5c;
|
|
|
|
}
|
|
|
|
ctx->use_hmac = 1;
|
|
|
|
sha224_hmac_update(ctx, ipad, 64);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-28 08:05:25 +00:00
|
|
|
/* Update the message digest with the contents of BUFFER containing
|
|
|
|
LENGTH bytes. */
|
|
|
|
void
|
|
|
|
sha256_hmac_update(sha256_hmac_context *ctx, const void *buffer, size_t length)
|
|
|
|
{
|
|
|
|
sha256_update(&ctx->ctx, buffer, length);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finalize an operation and return the digest. If R_DLEN is not NULL
|
|
|
|
the length of the digest will be stored at that address. The
|
|
|
|
returned value is valid as long as the context exists. On error
|
|
|
|
NULL is returned. */
|
2015-04-28 13:02:37 +00:00
|
|
|
byte *
|
2015-04-28 08:05:25 +00:00
|
|
|
sha256_hmac_final(sha256_hmac_context *ctx)
|
|
|
|
{
|
|
|
|
sha256_final(&ctx->ctx);
|
|
|
|
if (ctx->use_hmac)
|
|
|
|
{
|
|
|
|
sha256_hmac_context tmp_ctx;
|
|
|
|
|
|
|
|
sha256_hmac_init(&tmp_ctx, NULL, 0);
|
|
|
|
sha256_hmac_update(&tmp_ctx, ctx->opad, 64);
|
|
|
|
sha256_hmac_update(&tmp_ctx, ctx->ctx.buf, 32);
|
|
|
|
sha256_final(&tmp_ctx.ctx);
|
|
|
|
memcpy(ctx->ctx.buf, tmp_ctx.ctx.buf, 32);
|
|
|
|
}
|
|
|
|
return ctx->ctx.buf;
|
|
|
|
}
|
|
|
|
|