0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-13 12:31:53 +00:00
bird/lib/flowspec.c

1321 lines
32 KiB
C
Raw Normal View History

/*
* BIRD Library -- Flow specification (RFC 5575)
*
* (c) 2016 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Flow specification (flowspec)
*
* Flowspec are rules (RFC 5575) for firewalls disseminated using BGP protocol.
* The |flowspec.c| is a library for handling flowspec binary streams and
* flowspec data structures. You will find there functions for validation
* incoming flowspec binary streams, iterators for jumping over components,
* functions for handling a length and functions for formatting flowspec data
* structure into user-friendly text representation.
*
* In this library, you will find also flowspec builder. In |confbase.Y|, there
* are grammar's rules for parsing and building new flowspec data structure
* from BIRD's configuration files and from BIRD's command line interface.
* Finalize function will assemble final &net_addr_flow4 or &net_addr_flow6
* data structure.
*
* The data structures &net_addr_flow4 and &net_addr_flow6 are defined in
* |net.h| file. The attribute length is size of whole data structure plus
* binary stream representation of flowspec including a compressed encoded
* length of flowspec.
*
* Sometimes in code, it is used expression flowspec type, it should mean
* flowspec component type.
*/
#include <stdlib.h>
#include "nest/bird.h"
#include "lib/flowspec.h"
#include "conf/conf.h"
static const char* flow4_type_str[] = {
[FLOW_TYPE_DST_PREFIX] = "dst",
[FLOW_TYPE_SRC_PREFIX] = "src",
[FLOW_TYPE_IP_PROTOCOL] = "proto",
[FLOW_TYPE_PORT] = "port",
[FLOW_TYPE_DST_PORT] = "dport",
[FLOW_TYPE_SRC_PORT] = "sport",
[FLOW_TYPE_ICMP_TYPE] = "icmp type",
[FLOW_TYPE_ICMP_CODE] = "icmp code",
[FLOW_TYPE_TCP_FLAGS] = "tcp flags",
[FLOW_TYPE_PACKET_LENGTH] = "length",
[FLOW_TYPE_DSCP] = "dscp",
[FLOW_TYPE_FRAGMENT] = "fragment"
};
static const char* flow6_type_str[] = {
[FLOW_TYPE_DST_PREFIX] = "dst",
[FLOW_TYPE_SRC_PREFIX] = "src",
[FLOW_TYPE_NEXT_HEADER] = "next header",
[FLOW_TYPE_PORT] = "port",
[FLOW_TYPE_DST_PORT] = "dport",
[FLOW_TYPE_SRC_PORT] = "sport",
[FLOW_TYPE_ICMP_TYPE] = "icmp type",
[FLOW_TYPE_ICMP_CODE] = "icmp code",
[FLOW_TYPE_TCP_FLAGS] = "tcp flags",
[FLOW_TYPE_PACKET_LENGTH] = "length",
[FLOW_TYPE_DSCP] = "dscp",
[FLOW_TYPE_FRAGMENT] = "fragment",
[FLOW_TYPE_LABEL] = "label"
};
/**
* flow_type_str - get stringified flowspec name of component
* @type: flowspec component type
* @ipv6: IPv4/IPv6 decide flag, use zero for IPv4 and one for IPv6
*
* This function returns flowspec name of component @type in string.
*/
const char *
flow_type_str(enum flow_type type, int ipv6)
{
return ipv6 ? flow6_type_str[type] : flow4_type_str[type];
}
/*
* Length
*/
/**
* flow_write_length - write compressed length value
* @data: destination buffer to write
* @len: the value of the length (0 to 0xfff) for writing
*
* This function writes appropriate as (1- or 2-bytes) the value of @len into
* buffer @data. The function returns number of written bytes, thus 1 or 2 bytes.
*/
uint
flow_write_length(byte *data, u16 len)
{
if (len >= 0xf0)
{
put_u16(data, len | 0xf000);
return 2;
}
*data = len;
return 1;
}
inline static uint
get_value_length(const byte *op)
{
return (1 << ((*op & 0x30) >> 4));
}
/*
* Flowspec iterators
*/
static inline u8 num_op(const byte *op) { return (*op & 0x07); }
static inline int isset_and(const byte *op) { return ((*op & 0x40) == 0x40); }
static inline int isset_end(const byte *op) { return ((*op & 0x80) == 0x80); }
static const byte *
flow_first_part(const byte *data)
{
if (!data || flow_read_length(data) == 0)
return NULL;
/* It is allowed to encode the value of length less then 240 into 2-bytes too */
if ((data[0] & 0xf0) == 0xf0)
return data + 2;
return data + 1;
}
/**
* flow4_first_part - get position of the first flowspec component
* @f: flowspec data structure &net_addr_flow4
*
* This function return a position to the beginning of the first flowspec
* component in IPv4 flowspec @f.
*/
inline const byte *
flow4_first_part(const net_addr_flow4 *f)
{
return f ? flow_first_part(f->data) : NULL;
}
/**
* flow6_first_part - get position of the first flowspec component
* @f: flowspec data structure &net_addr_flow6
*
* This function return a position to the beginning of the first flowspec
* component in IPv6 flowspec @f.
*/
inline const byte *
flow6_first_part(const net_addr_flow6 *f)
{
return f ? flow_first_part(f->data) : NULL;
}
static const byte *
flow_next_part(const byte *pos, const byte *end, int ipv6)
{
switch (*pos++)
{
case FLOW_TYPE_DST_PREFIX:
case FLOW_TYPE_SRC_PREFIX:
{
uint pxlen = *pos++;
uint bytes = BYTES(pxlen);
if (ipv6)
{
uint offset = *pos++ / 8;
pos += bytes - offset;
}
else
{
pos += bytes;
}
break;
}
case FLOW_TYPE_IP_PROTOCOL: /* == FLOW_TYPE_NEXT_HEADER */
case FLOW_TYPE_PORT:
case FLOW_TYPE_DST_PORT:
case FLOW_TYPE_SRC_PORT:
case FLOW_TYPE_ICMP_TYPE:
case FLOW_TYPE_ICMP_CODE:
case FLOW_TYPE_TCP_FLAGS:
case FLOW_TYPE_PACKET_LENGTH:
case FLOW_TYPE_DSCP:
case FLOW_TYPE_FRAGMENT:
case FLOW_TYPE_LABEL:
{
/* Is this the end of list operator-value pair? */
uint last = 0;
while (!last)
{
last = isset_end(pos);
/* Value length of operator */
uint len = get_value_length(pos);
pos += 1+len;
}
break;
}
default:
return NULL;
}
return (pos < end) ? pos : NULL;
}
/**
* flow4_next_part - an iterator over flowspec components in flowspec binary stream
* @pos: the beginning of a previous or the first component in flowspec binary
* stream
* @end: the last valid byte in scanned flowspec binary stream
*
* This function returns a position to the beginning of the next component
* (to a component type byte) in flowspec binary stream or %NULL for the end.
*/
inline const byte *
flow4_next_part(const byte *pos, const byte *end)
{
return flow_next_part(pos, end, 0);
}
/**
* flow6_next_part - an iterator over flowspec components in flowspec binary stream
* @pos: the beginning of a previous or the first component in flowspec binary
* stream
* @end: the last valid byte in scanned flowspec binary stream
*
* This function returns a position to the beginning of the next component
* (to a component type byte) in flowspec binary stream or %NULL for the end.
*/
inline const byte *
flow6_next_part(const byte *pos, const byte *end)
{
return flow_next_part(pos, end, 1);
}
static const byte *
flow_get_part(const byte *data, uint dlen, uint type, int ipv6)
{
const byte *part;
for (part = flow_first_part(data);
part && (part[0] <= type);
part = flow_next_part(part, data+dlen, ipv6))
if (part[0] == type)
return part;
return NULL;
}
const byte *
flow4_get_part(const net_addr_flow4 *f, uint type)
{
return flow_get_part(f->data, f->length - sizeof(net_addr_flow4), type, 0);
}
const byte *
flow6_get_part(const net_addr_flow6 *f, uint type)
{
return flow_get_part(f->data, f->length - sizeof(net_addr_flow6), type, 1);
}
/*
* Flowspec accessors
*/
static inline ip4_addr
flow_read_ip4(const byte *px, uint pxlen)
{
ip4_addr ip = IP4_NONE;
memcpy(&ip, px, BYTES(pxlen));
return ip4_ntoh(ip);
}
ip4_addr
flow_read_ip4_part(const byte *part)
{
return flow_read_ip4(part + 2, part[1]);
}
static inline ip6_addr
flow_read_ip6(const byte *px, uint pxlen, uint pxoffset)
{
uint floor_offset = BYTES(pxoffset - (pxoffset % 8));
uint ceil_len = BYTES(pxlen);
ip6_addr ip = IP6_NONE;
memcpy(((byte *) &ip) + floor_offset, px, ceil_len - floor_offset);
return ip6_ntoh(ip);
}
ip6_addr
flow_read_ip6_part(const byte *part)
{
return flow_read_ip6(part + 3, part[1], part[2]);
}
static uint
get_value(const byte *val, u8 len)
{
switch (len)
{
case 1: return *val;
case 2: return get_u16(val);
case 4: return get_u32(val);
// No component may have length 8
// case 8: return get_u64(val);
}
return 0;
}
/*
* Flowspec validation
*/
static const char* flow_validated_state_str_[] = {
[FLOW_ST_UNKNOWN_COMPONENT] = "Unknown component",
[FLOW_ST_VALID] = "Valid",
[FLOW_ST_NOT_COMPLETE] = "Not complete",
[FLOW_ST_EXCEED_MAX_PREFIX_LENGTH] = "Exceed maximal prefix length",
[FLOW_ST_EXCEED_MAX_PREFIX_OFFSET] = "Exceed maximal prefix offset",
[FLOW_ST_EXCEED_MAX_VALUE_LENGTH] = "Exceed maximal value length",
[FLOW_ST_BAD_TYPE_ORDER] = "Bad component order",
[FLOW_ST_AND_BIT_SHOULD_BE_UNSET] = "The AND-bit should be unset",
[FLOW_ST_ZERO_BIT_SHOULD_BE_UNSED] = "The Zero-bit should be unset",
[FLOW_ST_DEST_PREFIX_REQUIRED] = "Destination prefix is missing",
[FLOW_ST_INVALID_TCP_FLAGS] = "TCP flags exceeding 0xfff",
[FLOW_ST_CANNOT_USE_DONT_FRAGMENT] = "Cannot use Don't fragment flag in IPv6 flow"
};
/**
* flow_validated_state_str - return a textual description of validation process
* @code: validation result
*
* This function return well described validation state in string.
*/
const char *
flow_validated_state_str(enum flow_validated_state code)
{
return flow_validated_state_str_[code];
}
static const u8 flow4_max_value_length[] = {
[FLOW_TYPE_DST_PREFIX] = 0,
[FLOW_TYPE_SRC_PREFIX] = 0,
[FLOW_TYPE_IP_PROTOCOL] = 1,
[FLOW_TYPE_PORT] = 2,
[FLOW_TYPE_DST_PORT] = 2,
[FLOW_TYPE_SRC_PORT] = 2,
[FLOW_TYPE_ICMP_TYPE] = 1,
[FLOW_TYPE_ICMP_CODE] = 1,
[FLOW_TYPE_TCP_FLAGS] = 2,
[FLOW_TYPE_PACKET_LENGTH] = 2,
[FLOW_TYPE_DSCP] = 1,
[FLOW_TYPE_FRAGMENT] = 1 /* XXX */
};
static const u8 flow6_max_value_length[] = {
[FLOW_TYPE_DST_PREFIX] = 0,
[FLOW_TYPE_SRC_PREFIX] = 0,
[FLOW_TYPE_NEXT_HEADER] = 1,
[FLOW_TYPE_PORT] = 2,
[FLOW_TYPE_DST_PORT] = 2,
[FLOW_TYPE_SRC_PORT] = 2,
[FLOW_TYPE_ICMP_TYPE] = 1,
[FLOW_TYPE_ICMP_CODE] = 1,
[FLOW_TYPE_TCP_FLAGS] = 2,
[FLOW_TYPE_PACKET_LENGTH] = 2,
[FLOW_TYPE_DSCP] = 1,
[FLOW_TYPE_FRAGMENT] = 1, /* XXX */
[FLOW_TYPE_LABEL] = 4
};
u8
flow_max_value_length(enum flow_type type, int ipv6)
{
return ipv6 ? flow6_max_value_length[type] : flow4_max_value_length[type];
}
static enum flow_validated_state
flow_validate(const byte *nlri, uint len, int ipv6)
{
enum flow_type type = 0;
const byte *pos = nlri;
const byte *end = nlri + len;
while (pos < end)
{
/* Check increasing type ordering */
if (*pos <= type)
return FLOW_ST_BAD_TYPE_ORDER;
type = *pos++;
switch (type)
{
case FLOW_TYPE_DST_PREFIX:
case FLOW_TYPE_SRC_PREFIX:
{
uint pxlen = *pos++;
if (pxlen > (ipv6 ? IP6_MAX_PREFIX_LENGTH : IP4_MAX_PREFIX_LENGTH))
return FLOW_ST_EXCEED_MAX_PREFIX_LENGTH;
uint bytes = BYTES(pxlen);
if (ipv6)
{
uint pxoffset = *pos++;
if (pxoffset > IP6_MAX_PREFIX_LENGTH || pxoffset > pxlen)
return FLOW_ST_EXCEED_MAX_PREFIX_OFFSET;
bytes -= pxoffset / 8;
}
pos += bytes;
break;
}
case FLOW_TYPE_LABEL:
if (!ipv6)
return FLOW_ST_UNKNOWN_COMPONENT;
/* fall through */
case FLOW_TYPE_IP_PROTOCOL: /* == FLOW_TYPE_NEXT_HEADER */
case FLOW_TYPE_PORT:
case FLOW_TYPE_DST_PORT:
case FLOW_TYPE_SRC_PORT:
case FLOW_TYPE_ICMP_TYPE:
case FLOW_TYPE_ICMP_CODE:
case FLOW_TYPE_TCP_FLAGS:
case FLOW_TYPE_PACKET_LENGTH:
case FLOW_TYPE_DSCP:
case FLOW_TYPE_FRAGMENT:
{
uint last = 0;
uint first = 1;
while (!last)
{
/*
* 0 1 2 3 4 5 6 7
* +---+---+---+---+---+---+---+---+
* | e | a | len | 0 |lt |gt |eq |
* +---+---+---+---+---+---+---+---+
*
* Numeric operator
*/
last = isset_end(pos);
/* The AND bit should in the first operator byte of a sequence */
if (first && isset_and(pos))
return FLOW_ST_AND_BIT_SHOULD_BE_UNSET;
/* This bit should be zero */
if (*pos & 0x08)
return FLOW_ST_ZERO_BIT_SHOULD_BE_UNSED;
if (type == FLOW_TYPE_TCP_FLAGS || type == FLOW_TYPE_FRAGMENT)
{
/*
* 0 1 2 3 4 5 6 7
* +---+---+---+---+---+---+---+---+
* | e | a | len | 0 | 0 |not| m |
* +---+---+---+---+---+---+---+---+
*
* Bitmask operand
*/
if (*pos & 0x04)
return FLOW_ST_ZERO_BIT_SHOULD_BE_UNSED;
}
/* Value length of operator */
uint len = get_value_length(pos);
if (len > flow_max_value_length(type, ipv6))
return FLOW_ST_EXCEED_MAX_VALUE_LENGTH;
/* TCP Flags component must not check highest nibble (just 12 valid bits) */
if ((type == FLOW_TYPE_TCP_FLAGS) && (len == 2) && (pos[1] & 0xf0))
return FLOW_ST_INVALID_TCP_FLAGS;
/* Bit-7 must be 0 [draft-ietf-idr-flow-spec-v6] */
if ((type == FLOW_TYPE_FRAGMENT) && ipv6 && (pos[1] & 0x01))
return FLOW_ST_CANNOT_USE_DONT_FRAGMENT;
/* XXX: Could be a fragment component encoded in 2-bytes? */
pos += 1+len;
if (pos > end && !last)
return FLOW_ST_NOT_COMPLETE;
if (pos > (end+1))
return FLOW_ST_NOT_COMPLETE;
first = 0;
}
break;
}
default:
return FLOW_ST_UNKNOWN_COMPONENT;
}
}
if (pos != end)
return FLOW_ST_NOT_COMPLETE;
return FLOW_ST_VALID;
}
/**
* flow4_validate - check untrustworthy IPv4 flowspec data stream
* @nlri: flowspec data stream without compressed encoded length value
* @len: length of @nlri
*
* This function checks meaningfulness of binary flowspec. It should return
* %FLOW_ST_VALID or %FLOW_ST_UNKNOWN_COMPONENT. If some problem appears, it
* returns some other %FLOW_ST_xxx state.
*/
inline enum flow_validated_state
flow4_validate(const byte *nlri, uint len)
{
return flow_validate(nlri, len, 0);
}
/**
* flow6_validate - check untrustworthy IPv6 flowspec data stream
* @nlri: flowspec binary stream without encoded length value
* @len: length of @nlri
*
* This function checks meaningfulness of binary flowspec. It should return
* %FLOW_ST_VALID or %FLOW_ST_UNKNOWN_COMPONENT. If some problem appears, it
* returns some other %FLOW_ST_xxx state.
*/
inline enum flow_validated_state
flow6_validate(const byte *nlri, uint len)
{
return flow_validate(nlri, len, 1);
}
/*
* Flowspec Builder
*/
/**
* flow_builder_init - constructor for flowspec builder instance
* @pool: memory pool
*
* This function prepares flowspec builder instance using memory pool @pool.
*/
struct flow_builder *
flow_builder_init(pool *pool)
{
struct flow_builder *fb = mb_allocz(pool, sizeof(struct flow_builder));
BUFFER_INIT(fb->data, pool, 4);
return fb;
}
static int
is_stackable_type(enum flow_type type)
{
switch (type)
{
case FLOW_TYPE_IP_PROTOCOL:
case FLOW_TYPE_PORT:
case FLOW_TYPE_DST_PORT:
case FLOW_TYPE_SRC_PORT:
case FLOW_TYPE_ICMP_TYPE:
case FLOW_TYPE_ICMP_CODE:
case FLOW_TYPE_TCP_FLAGS:
case FLOW_TYPE_PACKET_LENGTH:
case FLOW_TYPE_DSCP:
case FLOW_TYPE_FRAGMENT:
case FLOW_TYPE_LABEL:
return 1;
default:
/* The unknown components are not stack-able in default */
return 0;
}
}
static int
builder_add_prepare(struct flow_builder *fb)
{
if (fb->parts[fb->this_type].length)
{
if (fb->last_type != fb->this_type)
return 0;
if (!is_stackable_type(fb->this_type))
return 0;
}
else
{
fb->parts[fb->this_type].offset = fb->data.used;
}
return 1;
}
static void
builder_add_finish(struct flow_builder *fb)
{
fb->parts[fb->this_type].length = fb->data.used - fb->parts[fb->this_type].offset;
flow_builder_set_type(fb, fb->this_type);
}
static void
push_pfx_to_buffer(struct flow_builder *fb, u8 pxlen_bytes, byte *ip)
{
for (int i = 0; i < pxlen_bytes; i++)
BUFFER_PUSH(fb->data) = *ip++;
}
/**
* flow_builder4_add_pfx - add IPv4 prefix
* @fb: flowspec builder instance
* @n4: net address of type IPv4
*
* This function add IPv4 prefix into flowspec builder instance.
*/
int
flow_builder4_add_pfx(struct flow_builder *fb, const net_addr_ip4 *n4)
{
if (!builder_add_prepare(fb))
return 0;
ip4_addr ip4 = ip4_hton(n4->prefix);
BUFFER_PUSH(fb->data) = fb->this_type;
BUFFER_PUSH(fb->data) = n4->pxlen;
push_pfx_to_buffer(fb, BYTES(n4->pxlen), (byte *) &ip4);
builder_add_finish(fb);
return 1;
}
/**
* flow_builder6_add_pfx - add IPv6 prefix
* @fb: flowspec builder instance
* @n6: net address of type IPv4
* @pxoffset: prefix offset for @n6
*
* This function add IPv4 prefix into flowspec builder instance. This function
* should return 1 for successful adding, otherwise returns %0.
*/
int
flow_builder6_add_pfx(struct flow_builder *fb, const net_addr_ip6 *n6, u32 pxoffset)
{
if (!builder_add_prepare(fb))
return 0;
ip6_addr ip6 = ip6_hton(n6->prefix);
BUFFER_PUSH(fb->data) = fb->this_type;
BUFFER_PUSH(fb->data) = n6->pxlen;
BUFFER_PUSH(fb->data) = pxoffset;
push_pfx_to_buffer(fb, BYTES(n6->pxlen) - (pxoffset / 8), ((byte *) &ip6) + (pxoffset / 8));
builder_add_finish(fb);
return 1;
}
/**
* flow_builder_add_op_val - add operator/value pair
* @fb: flowspec builder instance
* @op: operator
* @value: value
*
* This function add operator/value pair as a part of a flowspec component. It
* is required to set appropriate flowspec component type using function
* flow_builder_set_type(). This function should return 1 for successful
* adding, otherwise returns 0.
*/
int
flow_builder_add_op_val(struct flow_builder *fb, byte op, u32 value)
{
if (!builder_add_prepare(fb))
return 0;
if (fb->this_type == fb->last_type)
{
/* Remove the end-bit from last operand-value pair of the component */
fb->data.data[fb->last_op_offset] &= 0x7f;
}
else
{
BUFFER_PUSH(fb->data) = fb->this_type;
}
fb->last_op_offset = fb->data.used;
/* Set the end-bit for operand-value pair of the component */
op |= 0x80;
if (value & 0xff00)
{
BUFFER_PUSH(fb->data) = op | 0x10;
put_u16(BUFFER_INC(fb->data, 2), value);
}
else
{
BUFFER_PUSH(fb->data) = op;
BUFFER_PUSH(fb->data) = (u8) value;
}
builder_add_finish(fb);
return 1;
}
/**
* flow_builder_add_val_mask - add value/bitmask pair
* @fb: flowspec builder instance
* @op: operator
* @value: value
* @mask: bitmask
*
* It is required to set appropriate flowspec component type using function
2021-05-18 18:41:01 +00:00
* flow_builder_set_type(). Note that for negation, value must be zero or equal
* to bitmask.
*/
int
flow_builder_add_val_mask(struct flow_builder *fb, byte op, u32 value, u32 mask)
{
u32 a = value & mask;
u32 b = ~value & mask;
if (a)
{
flow_builder_add_op_val(fb, op ^ 0x01, a);
2017-05-23 11:12:25 +00:00
op |= FLOW_OP_AND;
}
if (b)
flow_builder_add_op_val(fb, op ^ 0x02, b);
return 1;
}
/**
* flow_builder_set_type - set type of next flowspec component
* @fb: flowspec builder instance
* @type: flowspec component type
*
* This function sets type of next flowspec component. It is necessary to call
* this function before each changing of adding flowspec component.
*/
void
flow_builder_set_type(struct flow_builder *fb, enum flow_type type)
{
fb->last_type = fb->this_type;
fb->this_type = type;
}
static void
builder_write_parts(struct flow_builder *fb, byte *buf)
{
for (int i = 1; i < FLOW_TYPE_MAX; i++)
{
if (fb->parts[i].length)
{
memcpy(buf, fb->data.data + fb->parts[i].offset, fb->parts[i].length);
buf += fb->parts[i].length;
}
}
}
/**
* flow_builder4_finalize - assemble final flowspec data structure &net_addr_flow4
* @fb: flowspec builder instance
* @lpool: linear memory pool
*
* This function returns final flowspec data structure &net_addr_flow4 allocated
* onto @lpool linear memory pool.
*/
net_addr_flow4 *
flow_builder4_finalize(struct flow_builder *fb, linpool *lpool)
{
uint data_len = fb->data.used + (fb->data.used < 0xf0 ? 1 : 2);
net_addr_flow4 *f = lp_alloc(lpool, sizeof(struct net_addr_flow4) + data_len);
ip4_addr prefix = IP4_NONE;
uint pxlen = 0;
if (fb->parts[FLOW_TYPE_DST_PREFIX].length)
{
byte *part = fb->data.data + fb->parts[FLOW_TYPE_DST_PREFIX].offset;
prefix = flow_read_ip4_part(part);
pxlen = flow_read_pxlen(part);
}
*f = NET_ADDR_FLOW4(prefix, pxlen, data_len);
builder_write_parts(fb, f->data + flow_write_length(f->data, fb->data.used));
return f;
}
/**
* flow_builder6_finalize - assemble final flowspec data structure &net_addr_flow6
* @fb: flowspec builder instance
* @lpool: linear memory pool for allocation of
*
* This function returns final flowspec data structure &net_addr_flow6 allocated
* onto @lpool linear memory pool.
*/
net_addr_flow6 *
flow_builder6_finalize(struct flow_builder *fb, linpool *lpool)
{
uint data_len = fb->data.used + (fb->data.used < 0xf0 ? 1 : 2);
net_addr_flow6 *n = lp_alloc(lpool, sizeof(net_addr_flow6) + data_len);
ip6_addr prefix = IP6_NONE;
uint pxlen = 0;
if (fb->parts[FLOW_TYPE_DST_PREFIX].length)
{
byte *part = fb->data.data + fb->parts[FLOW_TYPE_DST_PREFIX].offset;
prefix = flow_read_ip6_part(part);
pxlen = flow_read_pxlen(part);
}
*n = NET_ADDR_FLOW6(prefix, pxlen, data_len);
builder_write_parts(fb, n->data + flow_write_length(n->data, fb->data.used));
return n;
}
/**
* flow_builder_clear - flush flowspec builder instance for another flowspec creation
* @fb: flowspec builder instance
*
* This function flushes all data from builder but it maintains pre-allocated
* buffer space.
*/
void
flow_builder_clear(struct flow_builder *fb)
{
BUFFER(byte) data;
BUFFER_FLUSH(fb->data);
BUFFER_SHALLOW_COPY(data, fb->data);
memset(fb, 0, sizeof(struct flow_builder));
BUFFER_SHALLOW_COPY(fb->data, data);
}
/*
* Flowspec explication
*/
/**
* flow_explicate_buffer_size - return buffer size needed for explication
* @part: flowspec part to explicate
*
* This function computes and returns a required buffer size that has to be
* preallocated and passed to flow_explicate_part(). Note that it returns number
* of records, not number of bytes.
*/
uint
flow_explicate_buffer_size(const byte *part)
{
const byte *pos = part + 1;
uint first = 1;
uint len = 0;
while (1)
{
/*
* Conjunction sequences represent (mostly) one interval, do not count
* additional AND-ed operators. Ignore AND bit for the first operator.
*/
if (!isset_and(pos) || first)
len++;
/*
* The exception is that NEQ operator adds one more interval (by splitting
* one of intervals defined by other operators).
*/
if (num_op(pos) == FLOW_OP_NEQ)
len++;
if (isset_end(pos))
break;
first = 0;
pos = pos + 1 + get_value_length(pos);
}
return len;
}
static int flow_uint_cmp(const void *p1, const void *p2)
{ return uint_cmp(* (const uint *) p1, * (const uint *) p2); }
/**
* flow_explicate_part - compute explicit interval list from flowspec part
* @part: flowspec part to explicate
* @buf: pre-allocated buffer for result
*
* This function analyzes a flowspec part with numeric operators (e.g. port) and
* computes an explicit interval list of allowed values. The result is written
* to provided buffer @buf, which must have space for enough interval records as
* returned by flow_explicate_buffer_size(). The intervals are represented as
* two-sized arrays of lower and upper bound, both including. The return value
* is the number of intervals in the buffer.
*/
uint
flow_explicate_part(const byte *part, uint (*buf)[2])
{
/*
* The Flowspec numeric expression is almost in DNF form (as union of
* intersections), where each operator represents one elementary interval.
* The exception is NEQ operator, which represents union of two intervals,
* separated by the excluded value. Naive algorithm would be like:
*
* A <- empty set of intervals
* for each sequence of operators in conjunction
* {
* B <- empty set of intervals
* for each operator in the current sequence
* {
* C <- one or two elementary intervals from the current operator
* B <- intersection(B, C)
* }
* A <- union(A, B)
* }
*
* We simplify this by representing B just as one interval (vars lo, hi) and a
* list of excluded values. After the inner cycle, we expand that to a proper
* list of intervals that is added to existing ones from previous cycles.
* Finally, we sort and merge intersecting or touching intervals in A.
*
* The code handles up to 32bit values in numeric operators. Intervals are
* represented by lower and upper bound, both including. Intermediate values
* use s64 to simplify representation of excluding bounds for 0 and UINT32_MAX.
*/
const byte *pos = part + 1;
const s64 max = 0xffffffff;
s64 lo = 0;
s64 hi = max;
uint num = 0;
uint neqs = 0;
/* Step 1 - convert conjunction sequences to lists of intervals */
while (1)
{
uint op = num_op(pos);
uint len = get_value_length(pos);
s64 val = get_value(pos + 1, len);
uint last = isset_end(pos);
const byte *next_pos = pos + 1 + len;
/* Get a new interval from this operator */
s64 nlo = (op & FLOW_OP_LT) ? 0 : ((op & FLOW_OP_EQ) ? val : (val + 1));
s64 nhi = (op & FLOW_OP_GT) ? max : ((op & FLOW_OP_EQ) ? val : (val - 1));
/* Restrict current interval */
lo = MAX(lo, nlo);
hi = MIN(hi, nhi);
/* Store NEQs for later */
if (op == FLOW_OP_NEQ)
{
buf[num + neqs][0] = val;
buf[num + neqs][1] = 0;
neqs++;
}
/* End of conjunction sequence */
if (last || !isset_and(next_pos))
{
if (neqs)
{
/* Sort stored NEQs */
qsort(buf + num, neqs, 2 * sizeof(uint), flow_uint_cmp);
/* Dump stored NEQs as intervals */
uint base = num;
for (uint i = 0; i < neqs; i++)
{
val = buf[base + i][0];
if ((val < lo) || (val > hi))
continue;
if (val == lo)
{ lo++; continue; }
if (val == hi)
{ hi--; continue; }
buf[num][0] = lo;
buf[num][1] = val - 1;
num++;
lo = val + 1;
}
neqs = 0;
}
/* Save final interval */
if (lo <= hi)
{
buf[num][0] = lo;
buf[num][1] = hi;
num++;
}
lo = 0;
hi = max;
}
if (last)
break;
pos = next_pos;
}
if (num < 2)
return num;
/* Step 2 - Sort and merge list of intervals */
qsort(buf, num, 2 * sizeof(uint), flow_uint_cmp);
uint i = 0, j = 0;
while (i < num)
{
lo = buf[i][0];
hi = buf[i][1];
i++;
/* If intervals are intersecting or just touching, merge them */
while ((i < num) && ((s64) buf[i][0] <= (hi + 1)))
{
hi = MAX(hi, (s64) buf[i][1]);
i++;
}
buf[j][0] = lo;
buf[j][1] = hi;
j++;
}
return j;
}
/*
* Net Formatting
*/
/* Flowspec operators for [op, value]+ pairs */
static const char *
num_op_str(const byte *op)
{
switch (*op & 0x07)
{
2017-05-23 11:12:25 +00:00
case FLOW_OP_TRUE: return "true";
case FLOW_OP_EQ: return "=";
case FLOW_OP_GT: return ">";
case FLOW_OP_GEQ: return ">=";
case FLOW_OP_LT: return "<";
case FLOW_OP_LEQ: return "<=";
case FLOW_OP_NEQ: return "!=";
case FLOW_OP_FALSE: return "false";
}
return NULL;
}
static const char *
fragment_val_str(u8 val)
{
switch (val)
{
case 1: return "dont_fragment";
case 2: return "is_fragment";
case 4: return "first_fragment";
case 8: return "last_fragment";
}
return "???";
}
static void
net_format_flow_ip(buffer *b, const byte *part, int ipv6)
{
uint pxlen = part[1];
if (ipv6)
{
uint pxoffset = part[2];
if (pxoffset)
buffer_print(b, "%I6/%u offset %u; ", flow_read_ip6_part(part), pxlen, pxoffset);
else
buffer_print(b, "%I6/%u; ", flow_read_ip6_part(part), pxlen);
}
else
{
buffer_print(b, "%I4/%u; ", flow_read_ip4_part(part), pxlen);
}
}
static void
net_format_flow_num(buffer *b, const byte *part)
{
const byte *last_op = NULL;
const byte *op = part+1;
uint val;
uint len;
uint first = 1;
while (1)
{
if (!first)
{
/* XXX: I don't like this so complicated if-tree */
if (!isset_and(op) &&
2017-05-23 11:12:25 +00:00
((num_op( op) == FLOW_OP_EQ) || (num_op( op) == FLOW_OP_GEQ)) &&
((num_op(last_op) == FLOW_OP_EQ) || (num_op(last_op) == FLOW_OP_LEQ)))
{
b->pos--; /* Remove last char (it is a space) */
buffer_puts(b, ",");
}
else
{
buffer_puts(b, isset_and(op) ? "&& " : "|| ");
}
}
first = 0;
len = get_value_length(op);
val = get_value(op+1, len);
if (!isset_end(op) && !isset_and(op) && isset_and(op+1+len) &&
2017-05-23 11:12:25 +00:00
(num_op(op) == FLOW_OP_GEQ) && (num_op(op+1+len) == FLOW_OP_LEQ))
{
/* Display interval */
buffer_print(b, "%u..", val);
op += 1 + len;
len = get_value_length(op);
val = get_value(op+1, len);
buffer_print(b, "%u", val);
}
2017-05-23 11:12:25 +00:00
else if (num_op(op) == FLOW_OP_EQ)
{
buffer_print(b, "%u", val);
}
else
{
buffer_print(b, "%s %u", num_op_str(op), val);
}
if (isset_end(op))
{
buffer_puts(b, "; ");
break;
}
else
{
buffer_puts(b, " ");
}
last_op = op;
op += 1 + len;
}
}
static void
net_format_flow_bitmask(buffer *b, const byte *part)
{
const byte *op = part+1;
uint val;
uint len;
uint first = 1;
while (1)
{
if (!first)
buffer_puts(b, isset_and(op) ? "&& " : "|| ");
first = 0;
len = get_value_length(op);
val = get_value(op+1, len);
/*
* Not Match Show
* ------------------
* 0 0 !0/B
* 0 1 B/B
* 1 0 0/B
* 1 1 !B/B
*/
if ((*op & 0x3) == 0x3 || (*op & 0x3) == 0)
buffer_puts(b, "!");
if (*part == FLOW_TYPE_FRAGMENT && (val == 1 || val == 2 || val == 4 || val == 8))
buffer_print(b, "%s%s", ((*op & 0x1) ? "" : "!"), fragment_val_str(val));
else
buffer_print(b, "0x%x/0x%x", ((*op & 0x1) ? val : 0), val);
if (isset_end(op))
{
buffer_puts(b, "; ");
break;
}
else
{
buffer_puts(b, " ");
}
op += 1 + len;
}
}
2016-12-13 19:18:11 +00:00
static uint
net_format_flow(char *buf, uint blen, const byte *data, uint dlen, int ipv6)
{
buffer b = {
.start = buf,
.pos = buf,
.end = buf + blen,
};
const byte *part = flow_first_part(data);
*buf = 0;
if (ipv6)
buffer_puts(&b, "flow6 { ");
else
buffer_puts(&b, "flow4 { ");
while (part)
{
buffer_print(&b, "%s ", flow_type_str(*part, ipv6));
switch (*part)
{
case FLOW_TYPE_DST_PREFIX:
case FLOW_TYPE_SRC_PREFIX:
net_format_flow_ip(&b, part, ipv6);
break;
case FLOW_TYPE_IP_PROTOCOL: /* == FLOW_TYPE_NEXT_HEADER */
case FLOW_TYPE_PORT:
case FLOW_TYPE_DST_PORT:
case FLOW_TYPE_SRC_PORT:
case FLOW_TYPE_ICMP_TYPE:
case FLOW_TYPE_ICMP_CODE:
case FLOW_TYPE_PACKET_LENGTH:
case FLOW_TYPE_DSCP:
case FLOW_TYPE_LABEL:
net_format_flow_num(&b, part);
break;
case FLOW_TYPE_TCP_FLAGS:
case FLOW_TYPE_FRAGMENT:
net_format_flow_bitmask(&b, part);
break;
}
part = flow_next_part(part, data+dlen, ipv6);
}
buffer_puts(&b, "}");
if (b.pos == b.end)
{
b.pos = b.start + MIN(blen - 6, strlen(b.start));
buffer_puts(&b, " ...}");
}
return b.pos - b.start;
}
/**
* flow4_net_format - stringify flowspec data structure &net_addr_flow4
* @buf: pre-allocated buffer for writing a stringify net address flowspec
* @blen: free allocated space in @buf
* @f: flowspec data structure &net_addr_flow4 for stringify
*
* This function writes stringified @f into @buf. The function returns number
* of written chars. If final string is too large, the string will ends the with
* ' ...}' sequence and zero-terminator.
*/
2016-12-13 19:18:11 +00:00
uint
flow4_net_format(char *buf, uint blen, const net_addr_flow4 *f)
{
return net_format_flow(buf, blen, f->data, f->length - sizeof(net_addr_flow4), 0);
}
/**
* flow6_net_format - stringify flowspec data structure &net_addr_flow6
* @buf: pre-allocated buffer for writing a stringify net address flowspec
* @blen: free allocated space in @buf
* @f: flowspec data structure &net_addr_flow4 for stringify
*
* This function writes stringified @f into @buf. The function returns number
* of written chars. If final string is too large, the string will ends the with
* ' ...}' sequence and zero-terminator.
*/
2016-12-13 19:18:11 +00:00
uint
flow6_net_format(char *buf, uint blen, const net_addr_flow6 *f)
{
return net_format_flow(buf, blen, f->data, f->length - sizeof(net_addr_flow6), 1);
}