0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-22 09:41:54 +00:00
bird/filter/f-inst.c

1574 lines
45 KiB
C
Raw Permalink Normal View History

/*
* Filters: Instructions themselves
*
* Copyright 1998 Pavel Machek <pavel@ucw.cz>
* Copyright 2018 Maria Matejka <mq@jmq.cz>
* Copyright 2018 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*
2019-07-15 11:19:01 +00:00
* The filter code goes through several phases:
*
* 1 Parsing
* Flex- and Bison-generated parser decodes the human-readable data into
* a struct f_inst tree. This is an infix tree that was interpreted by
* depth-first search execution in previous versions of the interpreter.
* All instructions have their constructor: f_new_inst(FI_EXAMPLE, ...)
* translates into f_new_inst_FI_EXAMPLE(...) and the types are checked in
* compile time. If the result of the instruction is always the same,
* it's reduced to FI_CONSTANT directly in constructor. This phase also
* counts how many instructions are underlying in means of f_line_item
* fields to know how much we have to allocate in the next phase.
*
* 2 Linearize before interpreting
* The infix tree is always interpreted in the same order. Therefore we
* sort the instructions one after another into struct f_line. Results
* and arguments of these instructions are implicitly put on a value
* stack; e.g. the + operation just takes two arguments from the value
* stack and puts the result on there.
*
* 3 Interpret
* The given line is put on a custom execution stack. If needed (FI_CALL,
* FI_SWITCH, FI_AND, FI_OR, FI_CONDITION, ...), another line is put on top
* of the stack; when that line finishes, the execution continues on the
* older lines on the stack where it stopped before.
*
* 4 Same
* On config reload, the filters have to be compared whether channel
* reload is needed or not. The comparison is done by comparing the
* struct f_line's recursively.
*
* The main purpose of this rework was to improve filter performance
* by making the interpreter non-recursive.
*
* The other outcome is concentration of instruction definitions to
* one place -- right here. You shall define your instruction only here
* and nowhere else.
*
* Beware. This file is interpreted by M4 macros. These macros
* may be more stupid than you could imagine. If something strange
* happens after changing this file, compare the results before and
* after your change (see the Makefile to find out where the results are)
* and see what really happened.
*
* This file is not directly a C source code -> it is a generator input
* for several C sources; every instruction block gets expanded into many
* different places.
*
* All the arguments are processed literally; if you need an argument including comma,
* you have to quote it by [[ ... ]]
*
* What is the syntax here?
* m4_dnl INST(FI_NOP, in, out) { enum value, input args, output args
* m4_dnl ARG(num, type); argument, its id (in data fields) and type accessible by v1, v2, v3
* m4_dnl ARG_ANY(num); argument with no type check accessible by v1, v2, v3
* m4_dnl ARG_TYPE(num, type); just declare the type of argument
* m4_dnl VARARG; variable-length argument list; accessible by vv(i) and whati->varcount
* m4_dnl LINE(num, out); this argument has to be converted to its own f_line
* m4_dnl SYMBOL; symbol handed from config
* m4_dnl STATIC_ATTR; static attribute definition
* m4_dnl DYNAMIC_ATTR; dynamic attribute definition
* m4_dnl RTC; route table config
* m4_dnl ACCESS_RTE; this instruction needs route
*
* m4_dnl METHOD_CONSTRUCTOR(name); this instruction is in fact a method of the first argument's type; register it with the given name for that type
*
* m4_dnl FID_MEMBER( custom instruction member
* m4_dnl C type, for storage in structs
* m4_dnl name, how the member is named
* m4_dnl comparator for same(), if different, this should be TRUE (CAVEAT)
* m4_dnl dump format string debug -> format string for bvsnprintf
* m4_dnl dump format args appropriate args
* m4_dnl )
*
* m4_dnl RESULT(type, union-field, value); putting this on value stack
* m4_dnl RESULT_(type, union-field, value); like RESULT(), but do not declare the type
* m4_dnl RESULT_VAL(value-struct); pass the struct f_val directly
* m4_dnl RESULT_TYPE(type); just declare the type of result value
* m4_dnl RESULT_VOID; return undef
* m4_dnl }
*
* Note that runtime arguments m4_dnl (ARG*, VARARG) must be defined before
* parse-time arguments m4_dnl (LINE, SYMBOL, ...). During linearization,
* first ones move position in f_line by linearizing arguments first, while
* second ones store data to the current position.
*
2019-07-15 11:19:01 +00:00
* Also note that the { ... } blocks are not respected by M4 at all.
* If you get weird unmatched-brace-pair errors, check what it generated and why.
* What is really considered as one instruction is not the { ... } block
* after m4_dnl INST() but all the code between them.
*
* Other code is just copied into the interpreter part.
*
2023-06-19 13:49:51 +00:00
* It's also possible to declare type methods in a short way:
*
* m4_dnl METHOD(type, method name, argument count, code)
* m4_dnl METHOD_R(type, method name, argument count, result type, union-field, value)
*
* The filter language uses a simple type system, where values have types
* (constants T_*) and also terms (instructions) are statically typed. Our
* static typing is partial (some terms do not declare types of arguments
* or results), therefore it can detect most but not all type errors and
* therefore we still have runtime type checks.
*
* m4_dnl Types of arguments are declared by macros ARG() and ARG_TYPE(),
* m4_dnl types of results are declared by RESULT() and RESULT_TYPE().
* m4_dnl Macros ARG_ANY(), RESULT_() and RESULT_VAL() do not declare types
* m4_dnl themselves, but can be combined with ARG_TYPE() / RESULT_TYPE().
*
* m4_dnl Note that types should be declared only once. If there are
* m4_dnl multiple RESULT() macros in an instruction definition, they must
* m4_dnl use the exact same expression for type, or they should be replaced
* m4_dnl by multiple RESULT_() macros and a common RESULT_TYPE() macro.
* m4_dnl See e.g. FI_EA_GET or FI_MIN instructions.
*
*
2019-07-15 11:19:01 +00:00
* If you are satisfied with this, you don't need to read the following
* detailed description of what is really done with the instruction definitions.
*
* m4_dnl Now let's look under the cover. The code between each INST()
* m4_dnl is copied to several places, namely these (numbered by the M4 diversions
* m4_dnl used in filter/decl.m4):
*
* m4_dnl (102) struct f_inst *f_new_inst(FI_EXAMPLE [[ put it here ]])
* m4_dnl {
* m4_dnl ... (common code)
* m4_dnl (103) [[ put it here ]]
* m4_dnl ...
* m4_dnl if (all arguments are constant)
2019-10-23 20:53:23 +00:00
* m4_dnl (108) [[ put it here ]]
2019-07-15 11:19:01 +00:00
* m4_dnl }
* m4_dnl For writing directly to constructor argument list, use FID_NEW_ARGS.
* m4_dnl For computing something in constructor (103), use FID_NEW_BODY.
* m4_dnl For constant pre-interpretation (108), see below at FID_INTERPRET_BODY.
*
* m4_dnl struct f_inst {
* m4_dnl ... (common fields)
* m4_dnl union {
* m4_dnl struct {
* m4_dnl (101) [[ put it here ]]
* m4_dnl } i_FI_EXAMPLE;
* m4_dnl ...
* m4_dnl };
* m4_dnl };
* m4_dnl This structure is returned from constructor.
* m4_dnl For writing directly to this structure, use FID_STRUCT_IN.
*
* m4_dnl linearize(struct f_line *dest, const struct f_inst *what, uint pos) {
* m4_dnl ...
* m4_dnl switch (what->fi_code) {
* m4_dnl case FI_EXAMPLE:
* m4_dnl (105) [[ put it here ]]
* m4_dnl break;
* m4_dnl }
* m4_dnl }
* m4_dnl This is called when translating from struct f_inst to struct f_line_item.
* m4_dnl For accessing your custom instruction data, use following macros:
* m4_dnl whati -> for accessing (struct f_inst).i_FI_EXAMPLE
* m4_dnl item -> for accessing (struct f_line)[pos].i_FI_EXAMPLE
* m4_dnl For writing directly here, use FID_LINEARIZE_BODY.
*
* m4_dnl (107) struct f_line_item {
* m4_dnl ... (common fields)
* m4_dnl union {
* m4_dnl struct {
* m4_dnl (101) [[ put it here ]]
* m4_dnl } i_FI_EXAMPLE;
* m4_dnl ...
* m4_dnl };
* m4_dnl };
* m4_dnl The same as FID_STRUCT_IN (101) but for the other structure.
* m4_dnl This structure is returned from the linearizer (105).
* m4_dnl For writing directly to this structure, use FID_LINE_IN.
*
* m4_dnl f_dump_line_item_FI_EXAMPLE(struct dump_request *dreq, const struct f_line_item *item, const int indent)
2019-07-15 11:19:01 +00:00
* m4_dnl {
* m4_dnl (104) [[ put it here ]]
* m4_dnl }
* m4_dnl This code dumps the instruction via RDUMP. Note that the argument
2019-07-15 11:19:01 +00:00
* m4_dnl is the linearized instruction; if the instruction has arguments,
* m4_dnl their code has already been linearized and their value is taken
* m4_dnl from the value stack.
* m4_dnl For writing directly here, use FID_DUMP_BODY.
*
* m4_dnl f_same(...)
* m4_dnl {
* m4_dnl switch (f1_->fi_code) {
* m4_dnl case FI_EXAMPLE:
* m4_dnl (106) [[ put it here ]]
* m4_dnl break;
* m4_dnl }
* m4_dnl }
* m4_dnl This code compares the two given instrucions (f1_ and f2_)
* m4_dnl on reconfigure. For accessing your custom instruction data,
* m4_dnl use macros f1 and f2.
* m4_dnl For writing directly here, use FID_SAME_BODY.
*
* m4_dnl f_add_lines(...)
* m4_dnl {
* m4_dnl switch (what_->fi_code) {
* m4_dnl case FI_EXAMPLE:
* m4_dnl (109) [[ put it here ]]
* m4_dnl break;
* m4_dnl }
* m4_dnl }
* m4_dnl This code adds new filter lines reachable from the instruction
* m4_dnl to the filter iterator line buffer. This is for instructions
* m4_dnl that changes conrol flow, like FI_CONDITION or FI_CALL, most
* m4_dnl instructions do not need to update it. It is used in generic
* m4_dnl filter iteration code (FILTER_ITERATE*). For accessing your
* m4_dnl custom instruction data, use macros f1 and f2. For writing
* m4_dnl directly here, use FID_ITERATE_BODY.
*
2019-07-15 11:19:01 +00:00
* m4_dnl interpret(...)
* m4_dnl {
* m4_dnl switch (what->fi_code) {
* m4_dnl case FI_EXAMPLE:
* m4_dnl (108) [[ put it here ]]
* m4_dnl break;
* m4_dnl }
* m4_dnl }
* m4_dnl This code executes the instruction. Every pre-defined macro
* m4_dnl resets the output here. For setting it explicitly,
* m4_dnl use FID_INTERPRET_BODY.
* m4_dnl This code is put on two places; one is the interpreter, the other
* m4_dnl is instruction constructor. If you need to distinguish between
* m4_dnl these two, use FID_INTERPRET_EXEC or FID_INTERPRET_NEW respectively.
* m4_dnl To address the difference between interpreter and constructor
* m4_dnl environments, there are several convenience macros defined:
* m4_dnl runtime() -> for spitting out runtime error like division by zero
* m4_dnl RESULT(...) -> declare result; may overwrite arguments
* m4_dnl v1, v2, v3 -> positional arguments, may be overwritten by RESULT()
* m4_dnl falloc(size) -> allocate memory from the appropriate linpool
* m4_dnl fpool -> the current linpool
* m4_dnl NEVER_CONSTANT-> don't generate pre-interpretation code at all
* m4_dnl ACCESS_RTE -> check that route is available, also NEVER_CONSTANT
*
* m4_dnl If you are stymied, see FI_CALL or FI_CONSTANT or just search for
* m4_dnl the mentioned macros in this file to see what is happening there in wild.
*
*
* A note about soundness of the type system:
*
* A type system is sound when types of expressions are consistent with
* types of values resulting from evaluation of such expressions. Untyped
* expressions are ok, but badly typed expressions are not sound. So is
* the type system of BIRD filtering code sound? There are some points:
*
* All cases of (one) m4_dnl RESULT() macro are obviously ok, as the macro
* both declares a type and returns a value. One have to check instructions
* that use m4_dnl RESULT_TYPE() macro. There are two issues:
*
* FI_AND, FI_OR - second argument is statically checked to be T_BOOL and
* passed as result without dynamic typecheck, declared to be T_BOOL. If
* an untyped non-bool expression is used as a second argument, then
* the mismatched type is returned.
*
* FI_VAR_GET - soundness depends on consistency of declared symbol types
* and stored values. This is maintained when values are stored by
* FI_VAR_SET, but when they are stored by FI_CALL, only static checking is
* used, so when an untyped expression returning mismatched value is used
* as a function argument, then inconsistent value is stored and subsequent
* FI_VAR_GET would be unsound.
*
* Both of these issues are inconsequential, as mismatched values from
* unsound expressions will be caught by dynamic typechecks like mismatched
* values from untyped expressions.
*
* Also note that FI_CALL is the only expression without properly declared
* result type.
*/
/* Binary operators */
INST(FI_ADD, 2, 1) {
ARG(1,T_INT);
ARG(2,T_INT);
RESULT(T_INT, i, v1.val.i + v2.val.i);
}
INST(FI_SUBTRACT, 2, 1) {
ARG(1,T_INT);
ARG(2,T_INT);
RESULT(T_INT, i, v1.val.i - v2.val.i);
}
INST(FI_MULTIPLY, 2, 1) {
ARG(1,T_INT);
ARG(2,T_INT);
RESULT(T_INT, i, v1.val.i * v2.val.i);
}
INST(FI_DIVIDE, 2, 1) {
ARG(1,T_INT);
ARG(2,T_INT);
if (v2.val.i == 0) runtime( "Mother told me not to divide by 0" );
RESULT(T_INT, i, v1.val.i / v2.val.i);
}
2022-03-25 18:15:11 +00:00
INST(FI_BITOR, 2, 1) {
ARG(1,T_INT);
ARG(2,T_INT);
RESULT(T_INT, i, v1.val.i | v2.val.i);
}
INST(FI_BITAND, 2, 1) {
ARG(1,T_INT);
ARG(2,T_INT);
RESULT(T_INT, i, v1.val.i & v2.val.i);
}
INST(FI_AND, 1, 1) {
ARG(1,T_BOOL);
ARG_TYPE_STATIC(2,T_BOOL);
RESULT_TYPE(T_BOOL);
if (v1.val.i)
LINE(2,1);
else
RESULT_VAL(v1);
}
INST(FI_OR, 1, 1) {
ARG(1,T_BOOL);
ARG_TYPE_STATIC(2,T_BOOL);
RESULT_TYPE(T_BOOL);
if (!v1.val.i)
LINE(2,1);
else
RESULT_VAL(v1);
}
2019-07-10 14:46:31 +00:00
INST(FI_PAIR_CONSTRUCT, 2, 1) {
ARG(1,T_INT);
ARG(2,T_INT);
uint u1 = v1.val.i;
uint u2 = v2.val.i;
if ((u1 > 0xFFFF) || (u2 > 0xFFFF))
runtime( "Can't operate with value out of bounds in pair constructor" );
RESULT(T_PAIR, i, (u1 << 16) | u2);
}
2019-07-10 14:46:31 +00:00
INST(FI_EC_CONSTRUCT, 2, 1) {
ARG_ANY(1);
ARG(2, T_INT);
FID_MEMBER(enum ec_subtype, ecs, f1->ecs != f2->ecs, "ec subtype %s", ec_subtype_str(item->ecs));
int ipv4_used;
u32 key, val;
if (v1.type == T_INT) {
ipv4_used = 0; key = v1.val.i;
}
else if (v1.type == T_QUAD) {
ipv4_used = 1; key = v1.val.i;
}
/* IP->Quad implicit conversion */
else if (val_is_ip4(&v1)) {
ipv4_used = 1; key = ipa_to_u32(v1.val.ip);
}
else
2019-07-10 14:46:31 +00:00
runtime("Argument 1 of EC constructor must be integer or IPv4 address, got 0x%02x", v1.type);
val = v2.val.i;
if (ecs == EC_GENERIC)
RESULT(T_EC, ec, ec_generic(key, val));
else if (ipv4_used)
if (val <= 0xFFFF)
RESULT(T_EC, ec, ec_ip4(ecs, key, val));
else
runtime("4-byte value %u can't be used with IP-address key in extended community", val);
else if (key < 0x10000)
RESULT(T_EC, ec, ec_as2(ecs, key, val));
else
if (val <= 0xFFFF)
RESULT(T_EC, ec, ec_as4(ecs, key, val));
else
runtime("4-byte value %u can't be used with 4-byte ASN in extended community", val);
}
INST(FI_LC_CONSTRUCT, 3, 1) {
ARG(1, T_INT);
ARG(2, T_INT);
ARG(3, T_INT);
RESULT(T_LC, lc, [[(lcomm) { v1.val.i, v2.val.i, v3.val.i }]]);
}
INST(FI_PATHMASK_CONSTRUCT, 0, 1) {
VARARG;
struct f_path_mask *pm = falloc(sizeof(struct f_path_mask) + whati->varcount * sizeof(struct f_path_mask_item));
pm->len = whati->varcount;
for (uint i=0; i<whati->varcount; i++) {
switch (vv(i).type) {
case T_PATH_MASK_ITEM:
if (vv(i).val.pmi.kind == PM_LOOP)
{
if (i == 0)
runtime("Path mask iterator '+' cannot be first");
/* We want PM_LOOP as prefix operator */
pm->item[i] = pm->item[i - 1];
pm->item[i - 1] = vv(i).val.pmi;
break;
}
pm->item[i] = vv(i).val.pmi;
break;
case T_INT:
pm->item[i] = (struct f_path_mask_item) {
.asn = vv(i).val.i,
.kind = PM_ASN,
};
break;
case T_SET:
if (!path_set_type(vv(i).val.t))
runtime("Only integer sets allowed in path mask");
pm->item[i] = (struct f_path_mask_item) {
.set = vv(i).val.t,
.kind = PM_ASN_SET,
};
break;
default:
runtime( "Error resolving path mask template: value not an integer" );
}
}
RESULT(T_PATH_MASK, path_mask, pm);
}
/* Relational operators */
INST(FI_NEQ, 2, 1) {
ARG_ANY(1);
ARG_ANY(2);
ARG_PREFER_SAME_TYPE(1, 2);
RESULT(T_BOOL, i, !val_same(&v1, &v2));
}
INST(FI_EQ, 2, 1) {
ARG_ANY(1);
ARG_ANY(2);
ARG_PREFER_SAME_TYPE(1, 2);
RESULT(T_BOOL, i, val_same(&v1, &v2));
}
INST(FI_LT, 2, 1) {
ARG_ANY(1);
ARG_ANY(2);
ARG_SAME_TYPE(1, 2);
int i = val_compare(&v1, &v2);
if (i == F_CMP_ERROR)
runtime( "Can't compare values of incompatible types" );
RESULT(T_BOOL, i, (i == -1));
}
INST(FI_LTE, 2, 1) {
ARG_ANY(1);
ARG_ANY(2);
ARG_SAME_TYPE(1, 2);
int i = val_compare(&v1, &v2);
if (i == F_CMP_ERROR)
runtime( "Can't compare values of incompatible types" );
RESULT(T_BOOL, i, (i != 1));
}
INST(FI_NOT, 1, 1) {
ARG(1,T_BOOL);
RESULT(T_BOOL, i, !v1.val.i);
}
INST(FI_MATCH, 2, 1) {
ARG_ANY(1);
ARG_ANY(2);
int i = val_in_range(&v1, &v2);
if (i == F_CMP_ERROR)
runtime( "~ applied on unknown type pair" );
RESULT(T_BOOL, i, !!i);
}
INST(FI_NOT_MATCH, 2, 1) {
ARG_ANY(1);
ARG_ANY(2);
int i = val_in_range(&v1, &v2);
if (i == F_CMP_ERROR)
runtime( "!~ applied on unknown type pair" );
RESULT(T_BOOL, i, !i);
}
INST(FI_DEFINED, 1, 1) {
ARG_ANY(1);
RESULT(T_BOOL, i, (v1.type != T_VOID) && !val_is_undefined(v1));
}
METHOD_R(T_NET, type, T_ENUM_NET_TYPE, i, v1.val.net->type);
METHOD_R(T_IP, is_v4, T_BOOL, i, ipa_is_ip4(v1.val.ip));
/* Add initialized variable */
INST(FI_VAR_INIT, 1, 0) {
NEVER_CONSTANT;
ARG_ANY(1);
SYMBOL;
ARG_TYPE(1, sym->class & 0xff);
/* New variable is always the last on stack */
uint pos = curline.vbase + sym->offset;
fstk->vstk[pos] = v1;
fstk->vcnt = pos + 1;
}
/* Add uninitialized variable */
INST(FI_VAR_INIT0, 0, 0) {
NEVER_CONSTANT;
SYMBOL;
/* New variable is always the last on stack */
uint pos = curline.vbase + sym->offset;
fstk->vstk[pos] = f_get_empty(sym->class & 0xff);
fstk->vcnt = pos + 1;
}
/* Set to indirect value prepared in v1 */
INST(FI_VAR_SET, 1, 0) {
NEVER_CONSTANT;
ARG_ANY(1);
SYMBOL;
2019-10-23 20:53:23 +00:00
ARG_TYPE(1, sym->class & 0xff);
fstk->vstk[curline.vbase + sym->offset] = v1;
}
INST(FI_VAR_GET, 0, 1) {
SYMBOL;
NEVER_CONSTANT;
RESULT_TYPE(sym->class & 0xff);
RESULT_VAL(fstk->vstk[curline.vbase + sym->offset]);
}
2019-07-10 14:46:31 +00:00
INST(FI_CONSTANT, 0, 1) {
FID_MEMBER(
struct f_val,
val,
[[ !val_same(&(f1->val), &(f2->val)) ]],
"value %s",
val_dump(&(item->val))
);
RESULT_TYPE(val.type);
RESULT_VAL(val);
}
2019-07-10 14:46:31 +00:00
METHOD_R(T_PATH, empty, T_PATH, ad, &null_adata);
METHOD_R(T_CLIST, empty, T_CLIST, ad, &null_adata);
METHOD_R(T_ECLIST, empty, T_ECLIST, ad, &null_adata);
METHOD_R(T_LCLIST, empty, T_LCLIST, ad, &null_adata);
/* Common loop begin instruction, always created by f_for_cycle() */
INST(FI_FOR_LOOP_START, 0, 3) {
NEVER_CONSTANT;
SYMBOL;
/* Repeat the instruction which called us */
ASSERT_DIE(fstk->ecnt > 1);
prevline.pos--;
/* There should be exactly three items on the value stack to be taken care of */
fstk->vcnt += 3;
/* And these should also stay there after we finish for the caller instruction */
curline.ventry += 3;
/* Assert the iterator variable positioning */
ASSERT_DIE(curline.vbase + sym->offset == fstk->vcnt - 1);
/* The result type declaration makes no sense here but is needed */
RESULT_TYPE(T_VOID);
}
/* Type-specific for_next iterators */
INST(FI_PATH_FOR_NEXT, 3, 0) {
NEVER_CONSTANT;
ARG(1, T_PATH);
if (as_path_walk(v1.val.ad, &v2.val.i, &v3.val.i))
LINE(2,0);
METHOD_CONSTRUCTOR("!for_next");
}
INST(FI_CLIST_FOR_NEXT, 3, 0) {
NEVER_CONSTANT;
ARG(1, T_CLIST);
if (int_set_walk(v1.val.ad, &v2.val.i, &v3.val.i))
LINE(2,0);
METHOD_CONSTRUCTOR("!for_next");
}
INST(FI_ECLIST_FOR_NEXT, 3, 0) {
NEVER_CONSTANT;
ARG(1, T_ECLIST);
if (ec_set_walk(v1.val.ad, &v2.val.i, &v3.val.ec))
LINE(2,0);
METHOD_CONSTRUCTOR("!for_next");
}
INST(FI_LCLIST_FOR_NEXT, 3, 0) {
NEVER_CONSTANT;
ARG(1, T_LCLIST);
if (lc_set_walk(v1.val.ad, &v2.val.i, &v3.val.lc))
LINE(2,0);
METHOD_CONSTRUCTOR("!for_next");
}
INST(FI_ROUTES_BLOCK_FOR_NEXT, 3, 0) {
NEVER_CONSTANT;
ARG(1, T_ROUTES_BLOCK);
if (v2.val.i < v1.val.rte_block.len)
{
v3.val.rte = v1.val.rte_block.rte[v2.val.i++];
LINE(2,0);
}
METHOD_CONSTRUCTOR("!for_next");
}
INST(FI_CONDITION, 1, 0) {
ARG(1, T_BOOL);
if (v1.val.i)
LINE(2,0);
else
LINE(3,0);
}
INST(FI_PRINT, 1, 0) {
2019-07-02 23:23:49 +00:00
NEVER_CONSTANT;
ARG_ANY(1);
2019-07-02 23:23:49 +00:00
if (!(fs->flags & FF_SILENT))
{
if (!fs->buf.class)
log_prepare(&fs->buf, *L_INFO);
val_format(&v1, &fs->buf.buf);
}
2019-07-02 23:23:49 +00:00
}
INST(FI_FLUSH, 0, 0) {
NEVER_CONSTANT;
if (!(fs->flags & FF_SILENT))
/* After log_commit, the buffer is reset */
log_commit(&fs->buf);
}
2019-07-02 23:23:49 +00:00
INST(FI_DIE, 0, 0) {
NEVER_CONSTANT;
FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, "%s", filter_return_str(item->fret));
2019-07-02 23:23:49 +00:00
switch (whati->fret) {
case F_ACCEPT: /* Should take care about turning ACCEPT into MODIFY */
case F_ERROR:
case F_REJECT: /* Maybe print complete route along with reason to reject route? */
return fret; /* We have to return now, no more processing. */
default:
bug( "unknown return type: Can't happen");
}
}
2019-07-10 14:46:31 +00:00
INST(FI_CURRENT_ROUTE, 0, 1) {
NEVER_CONSTANT;
ACCESS_RTE;
RESULT_TYPE(T_ROUTE);
RESULT_VAL([[(struct f_val) { .type = T_ROUTE, .val.rte = fs->rte, }]]);
}
INST(FI_RTA_GET, 1, 1) {
{
ARG(1, T_ROUTE);
STATIC_ATTR;
struct rte *rte = v1.val.rte;
switch (sa.sa_code)
{
case SA_NET: RESULT(sa.type, net, rte->net); break;
case SA_PROTO: RESULT(sa.type, s, rte->src->owner->name); break;
default:
{
struct eattr *nhea = ea_find(rte->attrs, &ea_gen_nexthop);
struct nexthop_adata *nhad = nhea ? (struct nexthop_adata *) nhea->u.ptr : NULL;
struct nexthop *nh = nhad ? &nhad->nh : NULL;
switch (sa.sa_code)
{
case SA_DEST:
RESULT(sa.type, i, nhad ?
(NEXTHOP_IS_REACHABLE(nhad) ? RTD_UNICAST : nhad->dest)
: RTD_NONE);
break;
case SA_GW:
RESULT(sa.type, ip, nh ? nh->gw : IPA_NONE);
break;
case SA_IFNAME:
RESULT(sa.type, s, (nh && nh->iface) ? nh->iface->name : "");
break;
case SA_IFINDEX:
RESULT(sa.type, i, (nh && nh->iface) ? nh->iface->index : 0);
break;
case SA_WEIGHT:
RESULT(sa.type, i, (nh ? nh->weight : 0) + 1);
break;
case SA_GW_MPLS:
RESULT(sa.type, i, (nh && nh->labels) ? nh->label[0] : MPLS_NULL);
break;
default:
bug("Invalid static attribute access (%u/%u)", sa.type, sa.sa_code);
}
}
}
}
}
INST(FI_RTA_SET, 1, 0) {
ACCESS_RTE;
ARG_ANY(1);
STATIC_ATTR;
ARG_TYPE(1, sa.type);
{
union {
struct nexthop_adata nha;
struct {
struct adata ad;
struct nexthop nh;
u32 label;
};
} nha;
nha.ad = (struct adata) {
.length = sizeof (struct nexthop_adata) - sizeof (struct adata),
};
eattr *a = NULL;
switch (sa.sa_code)
{
case SA_DEST:
{
int i = v1.val.i;
if ((i != RTD_BLACKHOLE) && (i != RTD_UNREACHABLE) && (i != RTD_PROHIBIT))
runtime( "Destination can be changed only to blackhole, unreachable or prohibit" );
nha.nha.dest = i;
nha.ad.length = NEXTHOP_DEST_SIZE;
break;
}
case SA_GW:
{
struct eattr *nh_ea = ea_find(fs->rte->attrs, &ea_gen_nexthop);
ip_addr ip = v1.val.ip;
struct iface *ifa = (ipa_is_link_local(ip) && nh_ea) ?
((struct nexthop_adata *) nh_ea->u.ptr)->nh.iface : NULL;
/* XXX this code supposes that every owner is a protocol XXX */
neighbor *n = neigh_find(SKIP_BACK(struct proto, sources, fs->rte->src->owner), ip, ifa, 0);
if (!n || (n->scope == SCOPE_HOST))
runtime( "Invalid gw address" );
nha.nh = (struct nexthop) {
.gw = ip,
.iface = n->iface,
};
}
break;
case SA_IFNAME:
{
struct iface *ifa = if_find_by_name(v1.val.s);
if (!ifa)
runtime( "Invalid iface name" );
nha.nh = (struct nexthop) {
.iface = ifa,
};
}
break;
case SA_GW_MPLS:
{
if (v1.val.i >= 0x100000)
runtime( "Invalid MPLS label" );
struct eattr *nh_ea = ea_find(fs->rte->attrs, &ea_gen_nexthop);
if (!nh_ea)
runtime( "No nexthop to add a MPLS label to" );
nha.nh = ((struct nexthop_adata *) nh_ea->u.ptr)->nh;
if (v1.val.i != MPLS_NULL)
{
nha.nh.label[0] = v1.val.i;
nha.nh.labels = 1;
nha.ad.length = sizeof nha - sizeof (struct adata);
}
else
nha.nh.labels = 0;
}
break;
case SA_WEIGHT:
{
int i = v1.val.i;
if (i < 1 || i > 256)
runtime( "Setting weight value out of bounds" );
struct eattr *nh_ea = ea_find(fs->rte->attrs, &ea_gen_nexthop);
if (!nh_ea)
runtime( "No nexthop to set weight on" );
struct nexthop_adata *nhad = (struct nexthop_adata *) nh_ea->u.ptr;
if (!NEXTHOP_IS_REACHABLE(nhad))
runtime( "Setting weight needs regular nexthop " );
struct nexthop_adata *nhax = (struct nexthop_adata *) tmp_copy_adata(&nhad->ad);
/* Set weight on all next hops */
NEXTHOP_WALK(nh, nhax)
nh->weight = i - 1;
a = ea_set_attr(&fs->rte->attrs,
EA_LITERAL_DIRECT_ADATA(&ea_gen_nexthop, 0, &nhax->ad));
}
break;
default:
bug("Invalid static attribute access (%u/%u)", sa.type, sa.sa_code);
}
if (!a)
a = ea_set_attr(&fs->rte->attrs,
EA_LITERAL_DIRECT_ADATA(&ea_gen_nexthop, 0, tmp_copy_adata(&nha.ad)));
a->originated = 1;
a->fresh = 1;
}
}
INST(FI_EA_GET, 1, 1) { /* Access to extended attributes */
ARG(1, T_ROUTE);
DYNAMIC_ATTR;
RESULT_TYPE(da->type);
{
struct f_val empty;
const eattr *e = ea_find(v1.val.rte->attrs, da->id);
if (e)
{
ASSERT_DIE(e->type == da->type);
switch (e->type) {
case T_IP:
RESULT_(T_IP, ip, *((const ip_addr *) e->u.ptr->data));
break;
case T_STRING:
RESULT_(T_STRING, s, (const char *) e->u.ptr->data);
break;
default:
RESULT_VAL([[(struct f_val) {
.type = e->type,
.val.bval = e->u,
}]]);
}
}
else if (da->empty)
RESULT_VAL(da->empty(da));
else if ((empty = f_get_empty(da->type)).type != T_VOID)
RESULT_VAL(empty);
else
RESULT_VOID;
}
}
INST(FI_EA_SET, 1, 0) {
ACCESS_RTE;
ARG_ANY(1);
DYNAMIC_ATTR;
ARG_TYPE(1, da->type);
FID_NEW_BODY;
if (da->type == T_OPAQUE)
cf_error("Setting opaque attribute is not allowed");
FID_INTERPRET_BODY;
{
struct eattr *a;
switch (da->type) {
case T_IFACE:
case T_OPAQUE:
runtime( "Setting opaque attribute is not allowed" );
break;
2019-07-10 14:46:31 +00:00
2022-04-10 12:11:46 +00:00
case T_IP:
a = ea_set_attr(&fs->rte->attrs,
EA_LITERAL_STORE_ADATA(da, da->flags, &v1.val.ip, sizeof(ip_addr)));
break;
2019-07-10 14:46:31 +00:00
case T_STRING:
a = ea_set_attr(&fs->rte->attrs,
EA_LITERAL_STORE_ADATA(da, da->flags, v1.val.s, strlen(v1.val.s) + 1));
break;
2019-07-10 14:46:31 +00:00
default:
a = ea_set_attr(&fs->rte->attrs,
EA_LITERAL_GENERIC(da->id, da->type, da->flags, .u = v1.val.bval));
break;
}
a->originated = 1;
a->fresh = 1;
}
}
INST(FI_EA_UNSET, 0, 0) {
DYNAMIC_ATTR;
ACCESS_RTE;
ea_unset_attr(&fs->rte->attrs, 1, da);
}
INST(FI_DEFAULT, 2, 1) {
ARG_ANY(1);
ARG_ANY(2);
RESULT_TYPE(f_type_element_type(v2.type));
log(L_INFO "Type of arg 1 is: %d", v1.type);
if (v1.type == T_VOID)
RESULT_VAL(v2);
else
RESULT_VAL(v1);
}
2023-06-19 13:49:51 +00:00
/* Get length of */
METHOD_R(T_NET, len, T_INT, i, net_pxlen(v1.val.net));
METHOD_R(T_PATH, len, T_INT, i, as_path_getlen(v1.val.ad));
METHOD_R(T_CLIST, len, T_INT, i, int_set_get_size(v1.val.ad));
METHOD_R(T_ECLIST, len, T_INT, i, ec_set_get_size(v1.val.ad));
METHOD_R(T_LCLIST, len, T_INT, i, lc_set_get_size(v1.val.ad));
INST(FI_NET_SRC, 1, 1) { /* Get src prefix */
ARG(1, T_NET);
METHOD_CONSTRUCTOR("src");
net_addr_union *net = (void *) v1.val.net;
net_addr *src = falloc(sizeof(net_addr_ip6));
const byte *part;
switch(v1.val.net->type) {
case NET_FLOW4:
part = flow4_get_part(&net->flow4, FLOW_TYPE_SRC_PREFIX);
if (part)
net_fill_ip4(src, flow_read_ip4_part(part), flow_read_pxlen(part));
else
net_fill_ip4(src, IP4_NONE, 0);
break;
case NET_FLOW6:
part = flow6_get_part(&net->flow6, FLOW_TYPE_SRC_PREFIX);
if (part)
net_fill_ip6(src, flow_read_ip6_part(part), flow_read_pxlen(part));
else
net_fill_ip6(src, IP6_NONE, 0);
break;
case NET_IP6_SADR:
net_fill_ip6(src, net->ip6_sadr.src_prefix, net->ip6_sadr.src_pxlen);
break;
default:
runtime( "Flow or SADR expected" );
}
RESULT(T_NET, net, src);
}
INST(FI_NET_DST, 1, 1) { /* Get dst prefix */
ARG(1, T_NET);
METHOD_CONSTRUCTOR("dst");
net_addr_union *net = (void *) v1.val.net;
net_addr *dst = falloc(sizeof(net_addr_ip6));
const byte *part;
switch(v1.val.net->type) {
case NET_FLOW4:
part = flow4_get_part(&net->flow4, FLOW_TYPE_DST_PREFIX);
if (part)
net_fill_ip4(dst, flow_read_ip4_part(part), flow_read_pxlen(part));
else
net_fill_ip4(dst, IP4_NONE, 0);
break;
case NET_FLOW6:
part = flow6_get_part(&net->flow6, FLOW_TYPE_DST_PREFIX);
if (part)
net_fill_ip6(dst, flow_read_ip6_part(part), flow_read_pxlen(part));
else
net_fill_ip6(dst, IP6_NONE, 0);
break;
case NET_IP6_SADR:
net_fill_ip6(dst, net->ip6_sadr.dst_prefix, net->ip6_sadr.dst_pxlen);
break;
default:
runtime( "Flow or SADR expected" );
}
RESULT(T_NET, net, dst);
}
2023-06-19 13:49:51 +00:00
/* Get ROA max prefix length */
METHOD(T_NET, maxlen, 0, [[
if (!net_is_roa(v1.val.net))
runtime( "ROA expected" );
RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
((net_addr_roa4 *) v1.val.net)->max_pxlen :
((net_addr_roa6 *) v1.val.net)->max_pxlen);
2023-06-19 13:49:51 +00:00
]]);
/* Get ROA ASN */
2023-06-19 13:49:51 +00:00
METHOD(T_NET, asn, 0, [[
if (!net_is_roa(v1.val.net))
runtime( "ROA expected" );
RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
((net_addr_roa4 *) v1.val.net)->asn :
((net_addr_roa6 *) v1.val.net)->asn);
2023-06-19 13:49:51 +00:00
]]);
2023-06-19 13:49:51 +00:00
/* Convert prefix to IP */
METHOD_R(T_NET, ip, T_IP, ip, net_prefix(v1.val.net));
INST(FI_ROUTE_DISTINGUISHER, 1, 1) {
ARG(1, T_NET);
METHOD_CONSTRUCTOR("rd");
if (!net_is_vpn(v1.val.net))
runtime( "VPN address expected" );
RESULT(T_RD, ec, net_rd(v1.val.net));
}
/* Get first ASN from AS PATH */
METHOD_R(T_PATH, first, T_INT, i, ({ u32 as = 0; as_path_get_first(v1.val.ad, &as); as; }));
/* Get last ASN from AS PATH */
METHOD_R(T_PATH, last, T_INT, i, ({ u32 as = 0; as_path_get_last(v1.val.ad, &as); as; }));
2023-06-19 13:49:51 +00:00
/* Get last ASN from non-aggregated part of AS PATH */
METHOD_R(T_PATH, last_nonaggregated, T_INT, i, as_path_get_last_nonaggregated(v1.val.ad));
/* Get ASN part from the standard community ASN */
METHOD_R(T_PAIR, asn, T_INT, i, v1.val.i >> 16);
2023-06-19 13:49:51 +00:00
/* Get data part from the standard community */
METHOD_R(T_PAIR, data, T_INT, i, v1.val.i & 0xFFFF);
/* Get ASN part from the large community */
METHOD_R(T_LC, asn, T_INT, i, v1.val.lc.asn);
2023-06-19 13:49:51 +00:00
/* Get data1 part from the large community */
METHOD_R(T_LC, data1, T_INT, i, v1.val.lc.ldp1);
2023-06-19 13:49:51 +00:00
/* Get data2 part from the large community */
METHOD_R(T_LC, data2, T_INT, i, v1.val.lc.ldp2);
/* Get minimum element from clist */
METHOD_R(T_CLIST, min, T_PAIR, i, ({ u32 val = 0; int_set_min(v1.val.ad, &val); val; }));
/* Get maximum element from clist */
METHOD_R(T_CLIST, max, T_PAIR, i, ({ u32 val = 0; int_set_max(v1.val.ad, &val); val; }));
/* Get minimum element from eclist */
METHOD_R(T_ECLIST, min, T_EC, ec, ({ u64 val = 0; ec_set_min(v1.val.ad, &val); val; }));
/* Get maximum element from eclist */
METHOD_R(T_ECLIST, max, T_EC, ec, ({ u64 val = 0; ec_set_max(v1.val.ad, &val); val; }));
/* Get minimum element from lclist */
METHOD_R(T_LCLIST, min, T_LC, lc, ({ lcomm val = {}; lc_set_min(v1.val.ad, &val); val; }));
/* Get maximum element from lclist */
METHOD_R(T_LCLIST, max, T_LC, lc, ({ lcomm val = {}; lc_set_max(v1.val.ad, &val); val; }));
INST(FI_RETURN, 1, 0) {
NEVER_CONSTANT;
/* Acquire the return value */
ARG_ANY(1);
uint retpos = fstk->vcnt;
/* Drop every sub-block including ourselves */
do fstk->ecnt--;
while ((fstk->ecnt > 0) && !(fstk->estk[fstk->ecnt].emask & FE_RETURN));
/* Now we are at the caller frame; if no such, try to convert to accept/reject. */
if (!fstk->ecnt)
{
if (fstk->vstk[retpos].type == T_BOOL)
return (fstk->vstk[retpos].val.i) ? F_ACCEPT : F_REJECT;
else
runtime("Can't return non-bool from non-function");
}
/* Set the value stack position, overwriting the former implicit void */
fstk->vcnt = fstk->estk[fstk->ecnt].ventry - 1;
/* Copy the return value */
RESULT_VAL(fstk->vstk[retpos]);
}
INST(FI_CALL, 0, 1) {
NEVER_CONSTANT;
VARARG;
SYMBOL;
RESULT_TYPE(sym->function->return_type);
FID_NEW_BODY()
ASSERT(sym->class == SYM_FUNCTION);
if (whati->varcount != sym->function->args)
cf_error("Function '%s' expects %u arguments, got %u arguments",
sym->name, sym->function->args, whati->varcount);
/* Typecheck individual arguments */
struct f_inst *a = fvar;
struct f_arg *b = sym->function->arg_list;
for (uint i = 1; a && b; a = a->next, b = b->next, i++)
{
enum btype b_type = b->arg->class & 0xff;
if (a->type && (a->type != b_type) && !f_const_promotion(a, b_type))
cf_error("Argument %u of '%s' must be %s, got %s",
i, sym->name, f_type_name(b_type), f_type_name(a->type));
}
ASSERT(!a && !b);
/* Add implicit void slot for the return value */
struct f_inst *tmp = f_new_inst(FI_CONSTANT, (struct f_val) { .type = T_VOID });
tmp->next = whati->fvar;
whati->fvar = tmp;
what->size += tmp->size;
/* Mark recursive calls, they have dummy f_line */
if (!sym->function->len)
what->flags |= FIF_RECURSIVE;
FID_SAME_BODY()
if (!(f1->sym->flags & SYM_FLAG_SAME) && !(f1_->flags & FIF_RECURSIVE))
return 0;
FID_ITERATE_BODY()
if (!(what->flags & FIF_RECURSIVE))
BUFFER_PUSH(fit->lines) = whati->sym->function;
FID_INTERPRET_BODY()
/* Push the body on stack */
LINEX(sym->function);
curline.vbase = curline.ventry;
curline.emask |= FE_RETURN;
2019-07-10 14:46:31 +00:00
/* Arguments on stack */
fstk->vcnt += sym->function->args;
/* Storage for local variables */
f_vcnt_check_overflow(sym->function->vars);
memset(&(fstk->vstk[fstk->vcnt]), 0, sizeof(struct f_val) * sym->function->vars);
fstk->vcnt += sym->function->vars;
}
INST(FI_DROP_RESULT, 1, 0) {
NEVER_CONSTANT;
ARG_ANY(1);
}
INST(FI_SWITCH, 1, 0) {
ARG_ANY(1);
FID_MEMBER(struct f_tree *, tree, [[!same_tree(f1->tree, f2->tree)]], "tree %p", item->tree);
FID_LINEARIZE_BODY()
/* Linearize all branches in switch */
struct f_inst *last_inst = NULL;
struct f_line *last_line = NULL;
for (struct f_tree *t = whati->tree; t; t = t->left)
{
if (t->data != last_inst)
{
last_inst = t->data;
last_line = f_linearize(t->data, 0);
}
t->data = last_line;
}
/* Balance the tree */
item->tree = build_tree(whati->tree);
FID_ITERATE_BODY()
tree_walk(whati->tree, f_add_tree_lines, fit);
FID_INTERPRET_BODY()
/* In parse-time use find_tree_linear(), in runtime use find_tree() */
const struct f_tree *t = FID_HIC(,find_tree,find_tree_linear)(tree, &v1);
if (!t) {
v1.type = T_VOID;
t = FID_HIC(,find_tree,find_tree_linear)(tree, &v1);
if (!t) {
debug( "No else statement?\n");
FID_HIC(,break,return NULL);
}
}
LINEX(t->data);
}
INST(FI_IP_MASK, 2, 1) { /* IP.MASK(val) */
ARG(1, T_IP);
ARG(2, T_INT);
METHOD_CONSTRUCTOR("mask");
RESULT(T_IP, ip, [[ ipa_is_ip4(v1.val.ip) ?
ipa_from_ip4(ip4_and(ipa_to_ip4(v1.val.ip), ip4_mkmask(v2.val.i))) :
ipa_from_ip6(ip6_and(ipa_to_ip6(v1.val.ip), ip6_mkmask(v2.val.i))) ]]);
}
INST(FI_PATH_PREPEND, 2, 1) { /* Path prepend */
ARG(1, T_PATH);
ARG(2, T_INT);
METHOD_CONSTRUCTOR("prepend");
RESULT(T_PATH, ad, [[ as_path_prepend(fpool, v1.val.ad, v2.val.i) ]]);
}
/* Community list add */
INST(FI_CLIST_ADD_PAIR, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_PAIR);
METHOD_CONSTRUCTOR("add");
RESULT(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, v2.val.i) ]]);
}
INST(FI_CLIST_ADD_IP, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_IP);
METHOD_CONSTRUCTOR("add");
FID_NEW_BODY();
/* IP->Quad implicit conversion, must be before FI_CLIST_ADD_QUAD */
cf_warn("Method add(clist, ip) is deprecated, please use add(clist, quad)");
FID_INTERPRET_BODY();
if (!val_is_ip4(&v2)) runtime("Mismatched IP type");
RESULT(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
}
INST(FI_CLIST_ADD_QUAD, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_QUAD);
METHOD_CONSTRUCTOR("add");
RESULT(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, v2.val.i) ]]);
}
INST(FI_CLIST_ADD_CLIST, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_CLIST);
METHOD_CONSTRUCTOR("add");
RESULT(T_CLIST, ad, [[ int_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
}
INST(FI_ECLIST_ADD_EC, 2, 1) {
ARG(1, T_ECLIST);
ARG(2, T_EC);
METHOD_CONSTRUCTOR("add");
RESULT(T_ECLIST, ad, [[ ec_set_add(fpool, v1.val.ad, v2.val.ec) ]]);
}
INST(FI_ECLIST_ADD_ECLIST, 2, 1) {
ARG(1, T_ECLIST);
ARG(2, T_ECLIST);
METHOD_CONSTRUCTOR("add");
RESULT(T_ECLIST, ad, [[ ec_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
}
INST(FI_LCLIST_ADD_LC, 2, 1) {
ARG(1, T_LCLIST);
ARG(2, T_LC);
METHOD_CONSTRUCTOR("add");
RESULT(T_LCLIST, ad, [[ lc_set_add(fpool, v1.val.ad, v2.val.lc) ]]);
}
INST(FI_LCLIST_ADD_LCLIST, 2, 1) {
ARG(1, T_LCLIST);
ARG(2, T_LCLIST);
METHOD_CONSTRUCTOR("add");
RESULT(T_LCLIST, ad, [[ lc_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
}
INST(FI_PATH_DELETE_INT, 2, 1) {
ARG(1, T_PATH);
ARG(2, T_INT);
METHOD_CONSTRUCTOR("delete");
RESULT(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, &v2, 0) ]]);
}
INST(FI_PATH_DELETE_SET, 2, 1) {
ARG(1, T_PATH);
ARG(2, T_SET);
METHOD_CONSTRUCTOR("delete");
if (!path_set_type(v2.val.t))
runtime("Mismatched set type");
RESULT(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, &v2, 0) ]]);
}
/* Community list delete */
INST(FI_CLIST_DELETE_PAIR, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_PAIR);
METHOD_CONSTRUCTOR("delete");
RESULT(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, v2.val.i) ]]);
}
INST(FI_CLIST_DELETE_IP, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_IP);
METHOD_CONSTRUCTOR("delete");
FID_NEW_BODY();
/* IP->Quad implicit conversion, must be before FI_CLIST_DELETE_QUAD */
cf_warn("Method delete(clist, ip) is deprecated, please use delete(clist, quad)");
FID_INTERPRET_BODY();
if (!val_is_ip4(&v2)) runtime("Mismatched IP type");
RESULT(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
}
INST(FI_CLIST_DELETE_QUAD, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_QUAD);
METHOD_CONSTRUCTOR("delete");
RESULT(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, v2.val.i) ]]);
}
INST(FI_CLIST_DELETE_CLIST, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_CLIST);
METHOD_CONSTRUCTOR("delete");
RESULT(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 0) ]]);
}
INST(FI_CLIST_DELETE_SET, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_SET);
METHOD_CONSTRUCTOR("delete");
if (!clist_set_type(v2.val.t, &(struct f_val){}))
runtime("Mismatched set type");
RESULT(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 0) ]]);
}
INST(FI_ECLIST_DELETE_EC, 2, 1) {
ARG(1, T_ECLIST);
ARG(2, T_EC);
METHOD_CONSTRUCTOR("delete");
RESULT(T_ECLIST, ad, [[ ec_set_del(fpool, v1.val.ad, v2.val.ec) ]]);
}
INST(FI_ECLIST_DELETE_ECLIST, 2, 1) {
ARG(1, T_ECLIST);
ARG(2, T_ECLIST);
METHOD_CONSTRUCTOR("delete");
RESULT(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
}
INST(FI_ECLIST_DELETE_SET, 2, 1) {
ARG(1, T_ECLIST);
ARG(2, T_SET);
METHOD_CONSTRUCTOR("delete");
if (!eclist_set_type(v2.val.t))
runtime("Mismatched set type");
RESULT(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
}
INST(FI_LCLIST_DELETE_LC, 2, 1) {
ARG(1, T_LCLIST);
ARG(2, T_LC);
METHOD_CONSTRUCTOR("delete");
RESULT(T_LCLIST, ad, [[ lc_set_del(fpool, v1.val.ad, v2.val.lc) ]]);
}
INST(FI_LCLIST_DELETE_LCLIST, 2, 1) {
ARG(1, T_LCLIST);
ARG(2, T_LCLIST);
METHOD_CONSTRUCTOR("delete");
RESULT(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
}
INST(FI_LCLIST_DELETE_SET, 2, 1) {
ARG(1, T_LCLIST);
ARG(2, T_SET);
METHOD_CONSTRUCTOR("delete");
if (!lclist_set_type(v2.val.t))
runtime("Mismatched set type");
RESULT(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
}
INST(FI_PATH_FILTER_SET, 2, 1) {
ARG(1, T_PATH);
ARG(2, T_SET);
METHOD_CONSTRUCTOR("filter");
if (!path_set_type(v2.val.t))
runtime("Mismatched set type");
RESULT(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, &v2, 1) ]]);
}
INST(FI_CLIST_FILTER_CLIST, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_CLIST);
METHOD_CONSTRUCTOR("filter");
RESULT(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 1) ]]);
}
INST(FI_CLIST_FILTER_SET, 2, 1) {
ARG(1, T_CLIST);
ARG(2, T_SET);
METHOD_CONSTRUCTOR("filter");
if (!clist_set_type(v2.val.t, &(struct f_val){}))
runtime("Mismatched set type");
RESULT(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 1) ]]);
}
INST(FI_ECLIST_FILTER_ECLIST, 2, 1) {
ARG(1, T_ECLIST);
ARG(2, T_ECLIST);
METHOD_CONSTRUCTOR("filter");
RESULT(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
}
INST(FI_ECLIST_FILTER_SET, 2, 1) {
ARG(1, T_ECLIST);
ARG(2, T_SET);
METHOD_CONSTRUCTOR("filter");
if (!eclist_set_type(v2.val.t))
runtime("Mismatched set type");
RESULT(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
}
INST(FI_LCLIST_FILTER_LCLIST, 2, 1) {
ARG(1, T_LCLIST);
ARG(2, T_LCLIST);
METHOD_CONSTRUCTOR("filter");
RESULT(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
}
INST(FI_LCLIST_FILTER_SET, 2, 1) {
ARG(1, T_LCLIST);
ARG(2, T_SET);
METHOD_CONSTRUCTOR("filter");
if (!lclist_set_type(v2.val.t))
runtime("Mismatched set type");
RESULT(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
}
INST(FI_ROA_CHECK, 2, 1) { /* ROA Check */
NEVER_CONSTANT;
ARG(1, T_NET);
ARG(2, T_INT);
RTC(3);
2022-09-07 11:54:20 +00:00
rtable *table = rtc->table;
u32 as = v2.val.i;
if (!table)
runtime("Missing ROA table");
if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
runtime("Table type must be either ROA4 or ROA6");
if (table->addr_type != (v1.val.net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
else
RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, v1.val.net, as) ]]);
}
INST(FI_ASPA_CHECK_EXPLICIT, 2, 1) { /* ASPA Check */
NEVER_CONSTANT;
ARG(1, T_PATH);
ARG(2, T_BOOL);
RTC(3);
rtable *table = rtc->table;
if (!table)
runtime("Missing ASPA table");
if (table->addr_type != NET_ASPA)
runtime("Table type must be ASPA");
RESULT(T_ENUM_ASPA, i, [[ aspa_check(table, v1.val.ad, v2.val.i) ]]);
}
INST(FI_FROM_HEX, 1, 1) { /* Convert hex text to bytestring */
ARG(1, T_STRING);
int len = bstrhextobin(v1.val.s, NULL);
if (len < 0)
runtime("Invalid hex string");
struct adata *bs;
bs = falloc(sizeof(struct adata) + len);
bs->length = bstrhextobin(v1.val.s, bs->data);
ASSERT(bs->length == (size_t) len);
RESULT(T_BYTESTRING, bs, bs);
}
INST(FI_FORMAT, 1, 1) { /* Format */
ARG_ANY(1);
RESULT(T_STRING, s, val_format_str(fpool, &v1));
}
INST(FI_ASSERT, 1, 0) { /* Birdtest Assert */
NEVER_CONSTANT;
ARG(1, T_BOOL);
FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], "string %s", item->s);
ASSERT(s);
if (!bt_assert_hook)
runtime("No bt_assert hook registered, can't assert");
bt_assert_hook(v1.val.i, what);
}