mirror of
https://git.sb/baoshuo/OI-codes.git
synced 2024-11-30 15:56:27 +00:00
324 lines
7.2 KiB
C++
324 lines
7.2 KiB
C++
#include <iostream>
|
||
#include <limits>
|
||
|
||
using std::cin;
|
||
using std::cout;
|
||
const char endl = '\n';
|
||
|
||
template <typename T>
|
||
class Splay {
|
||
private:
|
||
struct node {
|
||
T value;
|
||
node *lchild, *rchild, *parent, **root;
|
||
std::size_t size, count;
|
||
|
||
node()
|
||
: value(0), lchild(nullptr), rchild(nullptr), parent(nullptr), root(nullptr), size(0), count(0) {}
|
||
|
||
node(const T &_value, node *_parent, node **_root)
|
||
: value(_value), lchild(nullptr), rchild(nullptr), parent(_parent), root(_root), size(1), count(1) {}
|
||
|
||
~node() {
|
||
if (lchild != nullptr) delete lchild;
|
||
if (rchild != nullptr) delete rchild;
|
||
}
|
||
|
||
node *&child(unsigned int x) {
|
||
return !x ? lchild : rchild;
|
||
}
|
||
|
||
unsigned int relation() const {
|
||
// 如果当前节点是其父亲节点的左儿子则返回 0,否则返回 1
|
||
return this == parent->lchild ? 0 : 1;
|
||
}
|
||
|
||
// 左儿子大小
|
||
std::size_t lsize() const {
|
||
return lchild == nullptr ? 0 : lchild->size;
|
||
}
|
||
|
||
// 右儿子大小
|
||
std::size_t rsize() const {
|
||
return rchild == nullptr ? 0 : rchild->size;
|
||
}
|
||
|
||
// 上传信息
|
||
void pushup() {
|
||
size = lsize() + count + rsize();
|
||
}
|
||
|
||
// 旋转
|
||
void rotate() {
|
||
node *old = parent;
|
||
unsigned int x = relation();
|
||
|
||
if (old->parent != nullptr) {
|
||
old->parent->child(old->relation()) = this;
|
||
}
|
||
parent = old->parent;
|
||
|
||
old->child(x) = child(x ^ 1);
|
||
if (child(x ^ 1) != nullptr) {
|
||
child(x ^ 1)->parent = old;
|
||
}
|
||
|
||
child(x ^ 1) = old;
|
||
old->parent = this;
|
||
|
||
old->pushup();
|
||
pushup();
|
||
|
||
if (parent == nullptr) *root = this;
|
||
}
|
||
|
||
// Splay
|
||
void splay(node *target = nullptr) {
|
||
while (parent != target) {
|
||
if (parent->parent == target) { // 父节点是目标节点
|
||
rotate();
|
||
} else if (relation() == parent->relation()) { // 关系相同
|
||
parent->rotate();
|
||
rotate();
|
||
} else {
|
||
rotate();
|
||
rotate();
|
||
}
|
||
}
|
||
}
|
||
|
||
// 前驱:左子树的最右点
|
||
node *predecessor() {
|
||
node *pred = lchild;
|
||
|
||
while (pred->rchild != nullptr) {
|
||
pred = pred->rchild;
|
||
}
|
||
|
||
return pred;
|
||
}
|
||
|
||
// 后继:右子树的最左点
|
||
node *successor() {
|
||
node *succ = rchild;
|
||
|
||
while (succ->lchild != nullptr) {
|
||
succ = succ->lchild;
|
||
}
|
||
|
||
return succ;
|
||
}
|
||
} * root;
|
||
|
||
// 插入(内部函数)
|
||
node *_insert(const T &value) {
|
||
node **target = &root, *parent = nullptr;
|
||
|
||
while (*target != nullptr && (*target)->value != value) {
|
||
parent = *target;
|
||
parent->size++;
|
||
|
||
// 根据大小向左右子树迭代
|
||
if (value < parent->value) {
|
||
target = &parent->lchild;
|
||
} else {
|
||
target = &parent->rchild;
|
||
}
|
||
}
|
||
|
||
if (*target == nullptr) {
|
||
*target = new node(value, parent, &root);
|
||
} else {
|
||
(*target)->count++;
|
||
(*target)->size++;
|
||
}
|
||
|
||
(*target)->splay();
|
||
|
||
return root;
|
||
}
|
||
|
||
// 查找指定的值对应的节点
|
||
node *find(const T &value) {
|
||
node *node = root; // 从根节点开始查找
|
||
|
||
while (node != nullptr && value != node->value) {
|
||
if (value < node->value) {
|
||
node = node->lchild;
|
||
} else {
|
||
node = node->rchild;
|
||
}
|
||
}
|
||
|
||
if (node != nullptr) {
|
||
node->splay();
|
||
}
|
||
|
||
return node;
|
||
}
|
||
|
||
// 删除
|
||
void erase(node *u) {
|
||
if (u == nullptr) return;
|
||
|
||
if (u->count > 1) { // 存在重复的数
|
||
u->splay();
|
||
u->count--;
|
||
u->size--;
|
||
|
||
return;
|
||
}
|
||
|
||
node *pred = u->predecessor(),
|
||
*succ = u->successor();
|
||
|
||
pred->splay();
|
||
succ->splay(pred);
|
||
|
||
delete succ->lchild;
|
||
succ->lchild = nullptr;
|
||
|
||
succ->pushup();
|
||
pred->pushup();
|
||
}
|
||
|
||
public:
|
||
Splay()
|
||
: root(nullptr) {
|
||
insert(std::numeric_limits<T>::min());
|
||
insert(std::numeric_limits<T>::max());
|
||
}
|
||
|
||
~Splay() {
|
||
delete root;
|
||
}
|
||
|
||
// 插入
|
||
void insert(const T &value) {
|
||
_insert(value);
|
||
}
|
||
|
||
// 删除
|
||
void erase(const T &value) {
|
||
node *node = find(value);
|
||
|
||
if (node == nullptr) return;
|
||
|
||
erase(node);
|
||
}
|
||
|
||
// 排名
|
||
unsigned int rank(const T &value) {
|
||
node *node = find(value);
|
||
|
||
if (node == nullptr) {
|
||
node = _insert(value);
|
||
// 此时 node 已经成为根节点,直接计算即可
|
||
int res = node->lsize(); // 由于「哨兵」的存在,此处无需 -1
|
||
erase(node);
|
||
|
||
return res;
|
||
}
|
||
|
||
// 此时 node 已经成为根节点,直接计算即可
|
||
return node->lsize();
|
||
}
|
||
|
||
// 选择
|
||
const T &select(int k) {
|
||
node *node = root;
|
||
|
||
while (k < node->lsize() || k >= node->lsize() + node->count) {
|
||
if (k < node->lsize()) { // 所需的节点在左子树中
|
||
node = node->lchild;
|
||
} else {
|
||
k -= node->lsize() + node->count;
|
||
node = node->rchild;
|
||
}
|
||
}
|
||
|
||
node->splay();
|
||
|
||
return node->value;
|
||
}
|
||
|
||
// 前驱
|
||
const T &predecessor(const T &value) {
|
||
node *node = find(value);
|
||
|
||
if (node == nullptr) {
|
||
node = _insert(value);
|
||
const T &result = node->predecessor()->value;
|
||
erase(node);
|
||
return result;
|
||
}
|
||
|
||
return node->predecessor()->value;
|
||
}
|
||
|
||
// 后继
|
||
const T &successor(const T &value) {
|
||
node *node = find(value);
|
||
|
||
if (node == nullptr) {
|
||
node = _insert(value);
|
||
const T &result = node->successor()->value;
|
||
erase(node);
|
||
return result;
|
||
}
|
||
|
||
return node->successor()->value;
|
||
}
|
||
};
|
||
|
||
int n;
|
||
Splay<int> tree;
|
||
|
||
int main() {
|
||
std::ios::sync_with_stdio(false);
|
||
cin.tie(nullptr);
|
||
|
||
cin >> n;
|
||
|
||
for (int i = 1; i <= n; i++) {
|
||
int op, x;
|
||
|
||
cin >> op >> x;
|
||
|
||
switch (op) {
|
||
case 1: {
|
||
tree.insert(x);
|
||
|
||
break;
|
||
}
|
||
case 2: {
|
||
tree.erase(x);
|
||
|
||
break;
|
||
}
|
||
case 3: {
|
||
cout << tree.rank(x) << endl;
|
||
|
||
break;
|
||
}
|
||
case 4: {
|
||
cout << tree.select(x) << endl;
|
||
|
||
break;
|
||
}
|
||
case 5: {
|
||
cout << tree.predecessor(x) << endl;
|
||
|
||
break;
|
||
}
|
||
case 6: {
|
||
cout << tree.successor(x) << endl;
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|