mirror of
https://git.sb/baoshuo/OI-codes.git
synced 2025-01-11 21:51:59 +00:00
130 lines
2.6 KiB
C++
130 lines
2.6 KiB
C++
#include <iostream>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
using std::cin;
|
|
using std::cout;
|
|
const char endl = '\n';
|
|
|
|
const int mod = 998244353;
|
|
|
|
constexpr long long binpow(long long a, long long b) {
|
|
a %= mod;
|
|
|
|
long long res = 1;
|
|
|
|
while (b) {
|
|
if (b & 1) res = res * a % mod;
|
|
a = a * a % mod;
|
|
b >>= 1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
std::vector<long long> number_theoretic_transform(std::vector<long long> a) {
|
|
// assert(a.size() == (1 << std::__lg(a.size())));
|
|
int k = std::__lg(a.size());
|
|
|
|
for (int i = 0; i < a.size(); i++) {
|
|
int t = 0;
|
|
|
|
for (int j = 0; j < k; j++) {
|
|
if (i & (1 << j)) {
|
|
t |= 1 << (k - j - 1);
|
|
}
|
|
}
|
|
|
|
if (i < t) std::swap(a[i], a[t]);
|
|
}
|
|
|
|
for (int len = 2; len <= a.size(); len <<= 1) {
|
|
int m = len >> 1;
|
|
long long wn = binpow(3, (mod - 1) / len);
|
|
|
|
for (int i = 0; i < a.size(); i += len) {
|
|
long long w = 1;
|
|
|
|
for (int j = 0; j < m; j++) {
|
|
long long u = a[i + j],
|
|
v = a[i + j + m] * w % mod;
|
|
|
|
a[i + j] = ((u + v) % mod + mod) % mod;
|
|
a[i + j + m] = ((u - v) % mod + mod) % mod;
|
|
w = w * wn % mod;
|
|
}
|
|
}
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
class Poly : public std::vector<long long> {
|
|
private:
|
|
public:
|
|
using std::vector<long long>::vector;
|
|
|
|
Poly() = default;
|
|
|
|
Poly(const std::vector<long long> &__v)
|
|
: std::vector<long long>(__v) {}
|
|
|
|
Poly(std::vector<long long> &&__v)
|
|
: std::vector<long long>(std::move(__v)) {}
|
|
} poly;
|
|
|
|
Poly inv(Poly a) {
|
|
if (a.size() == 1) return Poly{binpow(a[0], mod - 2)};
|
|
|
|
int n = a.size(),
|
|
k = 1 << (std::__lg(n << 1) + 1);
|
|
Poly b{a};
|
|
|
|
a.resize(k);
|
|
a = number_theoretic_transform(a);
|
|
|
|
b.resize(n + 1 >> 1);
|
|
b = inv(b);
|
|
b.resize(k);
|
|
b = number_theoretic_transform(b);
|
|
|
|
for (int i = 0; i < k; i++) {
|
|
b[i] = (2 - a[i] * b[i] % mod + mod) % mod * b[i] % mod;
|
|
}
|
|
|
|
long long inv_k = binpow(k, mod - 2);
|
|
b = number_theoretic_transform(b);
|
|
std::transform(b.begin(), b.end(), b.begin(), [&](long long x) {
|
|
return x * inv_k % mod;
|
|
});
|
|
std::reverse(b.begin() + 1, b.end());
|
|
b.resize(n);
|
|
|
|
return b;
|
|
}
|
|
|
|
int main() {
|
|
std::ios::sync_with_stdio(false);
|
|
cin.tie(nullptr);
|
|
|
|
int n;
|
|
|
|
cin >> n;
|
|
|
|
Poly f(n);
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
cin >> f[i];
|
|
}
|
|
|
|
auto g = inv(f);
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
cout << g[i] << ' ';
|
|
}
|
|
|
|
cout << endl;
|
|
|
|
return 0;
|
|
}
|