0
1
mirror of https://git.sb/baoshuo/OI-codes.git synced 2024-11-24 03:28:48 +00:00
OI-codes/LibreOJ/104/104.cpp

292 lines
5.9 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <iostream>
#include <limits>
using std::cin;
using std::cout;
const char endl = '\n';
const int N = 1e5 + 5;
class Splay {
private:
size_t root, cnt;
struct node {
size_t l, r, f, c, s;
int v;
node()
: l(0), r(0), f(0), c(0), s(0), v(0) {}
node(int _v, int _f)
: l(0), r(0), f(_f), c(1), s(1), v(_v) {}
size_t &child(unsigned x) {
return !x ? l : r;
}
} tr[N];
// 上传信息
void pushup(size_t u) {
tr[u].s = tr[tr[u].l].s + tr[tr[u].r].s + tr[u].c;
}
unsigned relation(size_t u) {
// 如果当前节点是其父亲节点的左儿子则返回 0否则返回 1
return u == tr[tr[u].f].l ? 0 : 1;
}
void rotate(size_t u) {
// 旧的父节点
size_t p = tr[u].f;
// 当前节点与父节点之间的关系
unsigned x = relation(u);
// 当前节点 <-> 父节点的父节点
if (tr[p].f) {
tr[tr[p].f].child(relation(p)) = u;
}
tr[u].f = tr[p].f;
// 原先的另一个子节点 <-> 父节点
if (tr[u].child(x ^ 1)) {
tr[tr[u].child(x ^ 1)].f = p;
}
tr[p].child(x) = tr[u].child(x ^ 1);
// 原先的父节点 -> 子节点
tr[u].child(x ^ 1) = p;
tr[p].f = u;
// 更新节点信息
pushup(p);
pushup(u);
}
// Splay
//
// 旋转到给定的位置target默认行为为旋转为根节点
void splay(size_t u, size_t t = 0) {
while (tr[u].f != t) {
if (tr[tr[u].f].f == t) {
rotate(u);
} else if (relation(u) == relation(tr[u].f)) {
rotate(tr[u].f);
rotate(u);
} else {
rotate(u);
rotate(u);
}
}
// 更新根节点
if (!t) root = u;
}
// 前驱
//
// 左子树的最右点
size_t _predecessor(size_t u) {
size_t cur = tr[u].l;
while (tr[cur].r) {
cur = tr[cur].r;
}
return cur;
}
// 后继
//
// 右子树的最左点
size_t _successor(size_t u) {
size_t cur = tr[u].r;
while (tr[cur].l) {
cur = tr[cur].l;
}
return cur;
}
size_t _find(const int &v) {
size_t u = root;
while (u && tr[u].v != v) {
// 根据数值大小向左右子树迭代
u = v < tr[u].v ? tr[u].l : tr[u].r;
}
if (u) splay(u);
return u;
}
size_t _insert(const int &v) {
size_t u = root, f = 0;
while (u && tr[u].v != v) {
f = u;
// 根据数值大小向左右子树迭代
u = v < tr[u].v ? tr[u].l : tr[u].r;
}
if (u) {
tr[u].c++;
tr[u].s++;
} else {
tr[u = ++cnt] = node(v, f);
if (f) tr[f].child(v > tr[f].v) = u;
}
splay(u);
return root;
}
void _erase(size_t u) {
if (!u) return;
if (tr[u].c > 1) { // 存在重复的数
splay(u);
tr[u].c--;
tr[u].s--;
return;
}
size_t pred = _predecessor(u),
succ = _successor(u);
splay(pred); // 将前驱旋转到根节点
splay(succ, pred); // 将后继旋转到根节点的右儿子
tr[succ].l = 0; // 此时要删的节点为根节点的左儿子且为叶子节点
// 更新节点信息
pushup(succ);
pushup(pred);
}
public:
Splay()
: root(0), cnt(0) {
// 插入哨兵节点
insert(std::numeric_limits<int>::min());
insert(std::numeric_limits<int>::max());
}
// 插入
void insert(const int &v) {
_insert(v);
}
// 删除
void erase(const int &v) {
_erase(_find(v));
}
// 排名
unsigned rank(const int &v) {
size_t u = _find(v);
if (!u) { // 不存在则插入一个方便查找
u = _insert(v);
// 此时 u 已经成为根节点,直接取左子树大小即可
unsigned r = tr[tr[u].l].s;
_erase(u);
return r;
}
return tr[tr[u].l].s;
}
// 选择
const int &select(unsigned k) {
size_t u = root;
while (k < tr[tr[u].l].s || k >= tr[tr[u].l].s + tr[u].c) {
if (k < tr[tr[u].l].s) {
u = tr[u].l;
} else {
k -= tr[tr[u].l].s + tr[u].c;
u = tr[u].r;
}
}
splay(u);
return tr[u].v;
}
// 前驱
const int &predecessor(const int &v) {
size_t u = _find(v);
if (!u) { // 不存在则插入一个方便查找
u = _insert(v);
const int &r = tr[_predecessor(u)].v;
_erase(u); // 删除
return r;
}
return tr[_predecessor(u)].v;
}
// 后继
const int &successor(const int &v) {
size_t u = _find(v);
if (!u) { // 不存在则插入一个方便查找
u = _insert(v);
const int &r = tr[_successor(u)].v;
_erase(u); // 删除
return r;
}
return tr[_successor(u)].v;
}
};
int n;
Splay tree;
int main() {
std::ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n;
while (n--) {
int op, x;
cin >> op >> x;
if (op == 1) {
tree.insert(x);
} else if (op == 2) {
tree.erase(x);
} else if (op == 3) {
cout << tree.rank(x) << endl;
} else if (op == 4) {
cout << tree.select(x) << endl;
} else if (op == 5) {
cout << tree.predecessor(x) << endl;
} else { // op == 6
cout << tree.successor(x) << endl;
}
}
return 0;
}