mirror of
https://git.sb/baoshuo/OI-codes.git
synced 2024-12-12 16:26:26 +00:00
122 lines
2.5 KiB
C++
122 lines
2.5 KiB
C++
#include <iostream>
|
|
#include <limits>
|
|
#include <stack>
|
|
|
|
using std::cin;
|
|
using std::cout;
|
|
using std::endl;
|
|
|
|
// Limits
|
|
const int N = 300005;
|
|
|
|
// Variables
|
|
int a[N];
|
|
bool vis[N];
|
|
|
|
// Segment Tree
|
|
void build(int, int, int);
|
|
int query(int, int, int);
|
|
|
|
int main() {
|
|
std::ios::sync_with_stdio(false);
|
|
|
|
int n, c;
|
|
cin >> n >> c;
|
|
for (int i = 1; i <= n; i++) {
|
|
cin >> a[i];
|
|
}
|
|
|
|
a[0] = std::numeric_limits<int>::max();
|
|
build(1, 1, n);
|
|
|
|
int pos = query(1, 1, c);
|
|
std::stack<int> st;
|
|
|
|
for (int i = 1; i < pos; i++) {
|
|
st.push(i);
|
|
}
|
|
cout << a[pos] << ' ';
|
|
|
|
for (int i = c + 1; i <= n; i++) {
|
|
int p = query(1, pos + 1, i);
|
|
if (!st.empty() && a[st.top()] <= a[p]) {
|
|
cout << a[st.top()] << ' ';
|
|
st.pop();
|
|
} else {
|
|
for (int j = pos + 1; j < p; j++) {
|
|
st.push(j);
|
|
}
|
|
pos = p;
|
|
cout << a[p] << ' ';
|
|
}
|
|
}
|
|
|
|
for (int i = 1; i < c; i++) {
|
|
int p = pos + 1 <= n ? query(1, pos + 1, n) : 0;
|
|
if (!st.empty() && a[st.top()] <= a[p]) {
|
|
cout << a[st.top()] << ' ';
|
|
st.pop();
|
|
} else {
|
|
for (int j = pos + 1; j < p; j++) {
|
|
st.push(j);
|
|
}
|
|
pos = p;
|
|
cout << a[p] << ' ';
|
|
}
|
|
}
|
|
|
|
cout << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// === Segment Tree ===
|
|
|
|
struct node {
|
|
int l, r, id;
|
|
|
|
node()
|
|
: l(0), r(0), id(0) {}
|
|
|
|
node(int _l, int _r)
|
|
: l(_l), r(_r), id(0) {}
|
|
} tr[N << 2];
|
|
|
|
inline void pushup(int u) {
|
|
tr[u].id = a[tr[u << 1].id] <= a[tr[u << 1 | 1].id] ? tr[u << 1].id : tr[u << 1 | 1].id;
|
|
}
|
|
|
|
void build(int u, int l, int r) {
|
|
tr[u] = node(l, r);
|
|
if (l == r) {
|
|
tr[u].id = l;
|
|
return;
|
|
}
|
|
int mid = l + r >> 1;
|
|
build(u << 1, l, mid);
|
|
build(u << 1 | 1, mid + 1, r);
|
|
pushup(u);
|
|
}
|
|
|
|
/**
|
|
* 查询区间 [l, r] 最小值,并返回最小值在 a 数组中对应的**下标**
|
|
* @param u 根节点坐标
|
|
* @param l 区间左端点
|
|
* @param r 区间右端点
|
|
* @return 最小值在 a 数组中对应的**下标**
|
|
*/
|
|
int query(int u, int l, int r) {
|
|
if (l <= tr[u].l && tr[u].r <= r) return tr[u].id;
|
|
int mid = tr[u].l + tr[u].r >> 1,
|
|
pos = 0;
|
|
if (l <= mid) {
|
|
int t = query(u << 1, l, r);
|
|
if (a[t] < a[pos]) pos = t;
|
|
}
|
|
if (r > mid) {
|
|
int t = query(u << 1 | 1, l, r);
|
|
if (a[t] < a[pos]) pos = t;
|
|
}
|
|
return pos;
|
|
}
|