mirror of
https://git.sb/baoshuo/OI-codes.git
synced 2024-11-27 17:16:28 +00:00
Compare commits
No commits in common. "dceb17b890f7ef27718062fab69407f598369c5a" and "2da6a4f17d6c41dddd72b479fe0c598d49796cfb" have entirely different histories.
dceb17b890
...
2da6a4f17d
@ -5,261 +5,274 @@ using std::cin;
|
||||
using std::cout;
|
||||
const char endl = '\n';
|
||||
|
||||
const int N = 1e5 + 5;
|
||||
|
||||
template <typename T>
|
||||
class Splay {
|
||||
private:
|
||||
size_t root, cnt;
|
||||
|
||||
struct node {
|
||||
size_t l, r, f, c, s;
|
||||
int v;
|
||||
T value;
|
||||
node *lchild, *rchild, *parent, **root;
|
||||
std::size_t size, count;
|
||||
|
||||
node()
|
||||
: l(0), r(0), f(0), c(0), s(0), v(0) {}
|
||||
: value(0), lchild(nullptr), rchild(nullptr), parent(nullptr), root(nullptr), size(0), count(0) {}
|
||||
|
||||
node(int _v, int _f)
|
||||
: l(0), r(0), f(_f), c(1), s(1), v(_v) {}
|
||||
node(const T &_value, node *_parent, node **_root)
|
||||
: value(_value), lchild(nullptr), rchild(nullptr), parent(_parent), root(_root), size(1), count(1) {}
|
||||
|
||||
size_t &child(unsigned x) {
|
||||
return !x ? l : r;
|
||||
~node() {
|
||||
if (lchild != nullptr) delete lchild;
|
||||
if (rchild != nullptr) delete rchild;
|
||||
}
|
||||
|
||||
node *&child(unsigned int x) {
|
||||
return !x ? lchild : rchild;
|
||||
}
|
||||
|
||||
unsigned int relation() const {
|
||||
// 如果当前节点是其父亲节点的左儿子则返回 0,否则返回 1
|
||||
return this == parent->lchild ? 0 : 1;
|
||||
}
|
||||
|
||||
// 左儿子大小
|
||||
std::size_t lsize() const {
|
||||
return lchild == nullptr ? 0 : lchild->size;
|
||||
}
|
||||
|
||||
// 右儿子大小
|
||||
std::size_t rsize() const {
|
||||
return rchild == nullptr ? 0 : rchild->size;
|
||||
}
|
||||
} tr[N];
|
||||
|
||||
// 上传信息
|
||||
void pushup(size_t u) {
|
||||
tr[u].s = tr[tr[u].l].s + tr[tr[u].r].s + tr[u].c;
|
||||
void pushup() {
|
||||
size = lsize() + count + rsize();
|
||||
}
|
||||
|
||||
unsigned relation(size_t u) {
|
||||
// 如果当前节点是其父亲节点的左儿子则返回 0,否则返回 1
|
||||
return u == tr[tr[u].f].l ? 0 : 1;
|
||||
// 旋转
|
||||
void rotate() {
|
||||
node *old = parent;
|
||||
unsigned int x = relation();
|
||||
|
||||
if (old->parent != nullptr) {
|
||||
old->parent->child(old->relation()) = this;
|
||||
}
|
||||
parent = old->parent;
|
||||
|
||||
old->child(x) = child(x ^ 1);
|
||||
if (child(x ^ 1) != nullptr) {
|
||||
child(x ^ 1)->parent = old;
|
||||
}
|
||||
|
||||
void rotate(size_t u) {
|
||||
// 旧的父节点
|
||||
size_t p = tr[u].f;
|
||||
child(x ^ 1) = old;
|
||||
old->parent = this;
|
||||
|
||||
// 当前节点与父节点之间的关系
|
||||
unsigned x = relation(u);
|
||||
old->pushup();
|
||||
pushup();
|
||||
|
||||
// 当前节点 <-> 父节点的父节点
|
||||
if (tr[p].f) {
|
||||
tr[tr[p].f].child(relation(p)) = u;
|
||||
}
|
||||
tr[u].f = tr[p].f;
|
||||
|
||||
// 原先的另一个子节点 <-> 父节点
|
||||
if (tr[u].child(x ^ 1)) {
|
||||
tr[tr[u].child(x ^ 1)].f = p;
|
||||
}
|
||||
tr[p].child(x) = tr[u].child(x ^ 1);
|
||||
|
||||
// 原先的父节点 -> 子节点
|
||||
tr[u].child(x ^ 1) = p;
|
||||
tr[p].f = u;
|
||||
|
||||
// 更新节点信息
|
||||
pushup(p);
|
||||
pushup(u);
|
||||
if (parent == nullptr) *root = this;
|
||||
}
|
||||
|
||||
// Splay
|
||||
//
|
||||
// 旋转到给定的位置(target),默认行为为旋转为根节点
|
||||
void splay(size_t u, size_t t = 0) {
|
||||
while (tr[u].f != t) {
|
||||
if (tr[tr[u].f].f == t) {
|
||||
rotate(u);
|
||||
} else if (relation(u) == relation(tr[u].f)) {
|
||||
rotate(tr[u].f);
|
||||
rotate(u);
|
||||
void splay(node *target = nullptr) {
|
||||
while (parent != target) {
|
||||
if (parent->parent == target) { // 父节点是目标节点
|
||||
rotate();
|
||||
} else if (relation() == parent->relation()) { // 关系相同
|
||||
parent->rotate();
|
||||
rotate();
|
||||
} else {
|
||||
rotate(u);
|
||||
rotate(u);
|
||||
rotate();
|
||||
rotate();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 更新根节点
|
||||
if (!t) root = u;
|
||||
// 前驱:左子树的最右点
|
||||
node *predecessor() {
|
||||
node *pred = lchild;
|
||||
|
||||
while (pred->rchild != nullptr) {
|
||||
pred = pred->rchild;
|
||||
}
|
||||
|
||||
// 前驱
|
||||
//
|
||||
// 左子树的最右点
|
||||
size_t _predecessor(size_t u) {
|
||||
size_t cur = tr[u].l;
|
||||
|
||||
while (tr[cur].r) {
|
||||
cur = tr[cur].r;
|
||||
return pred;
|
||||
}
|
||||
|
||||
return cur;
|
||||
// 后继:右子树的最左点
|
||||
node *successor() {
|
||||
node *succ = rchild;
|
||||
|
||||
while (succ->lchild != nullptr) {
|
||||
succ = succ->lchild;
|
||||
}
|
||||
|
||||
// 后继
|
||||
//
|
||||
// 右子树的最左点
|
||||
size_t _successor(size_t u) {
|
||||
size_t cur = tr[u].r;
|
||||
|
||||
while (tr[cur].l) {
|
||||
cur = tr[cur].l;
|
||||
return succ;
|
||||
}
|
||||
} * root;
|
||||
|
||||
return cur;
|
||||
}
|
||||
// 插入(内部函数)
|
||||
node *_insert(const T &value) {
|
||||
node **target = &root, *parent = nullptr;
|
||||
|
||||
size_t _find(const int &v) {
|
||||
size_t u = root;
|
||||
while (*target != nullptr && (*target)->value != value) {
|
||||
parent = *target;
|
||||
parent->size++;
|
||||
|
||||
while (u && tr[u].v != v) {
|
||||
// 根据数值大小向左右子树迭代
|
||||
u = v < tr[u].v ? tr[u].l : tr[u].r;
|
||||
}
|
||||
|
||||
if (u) splay(u);
|
||||
|
||||
return u;
|
||||
}
|
||||
|
||||
size_t _insert(const int &v) {
|
||||
size_t u = root, f = 0;
|
||||
|
||||
while (u && tr[u].v != v) {
|
||||
f = u;
|
||||
// 根据数值大小向左右子树迭代
|
||||
u = v < tr[u].v ? tr[u].l : tr[u].r;
|
||||
}
|
||||
|
||||
if (u) {
|
||||
tr[u].c++;
|
||||
tr[u].s++;
|
||||
// 根据大小向左右子树迭代
|
||||
if (value < parent->value) {
|
||||
target = &parent->lchild;
|
||||
} else {
|
||||
tr[u = ++cnt] = node(v, f);
|
||||
if (f) tr[f].child(v > tr[f].v) = u;
|
||||
target = &parent->rchild;
|
||||
}
|
||||
}
|
||||
|
||||
splay(u);
|
||||
if (*target == nullptr) {
|
||||
*target = new node(value, parent, &root);
|
||||
} else {
|
||||
(*target)->count++;
|
||||
(*target)->size++;
|
||||
}
|
||||
|
||||
(*target)->splay();
|
||||
|
||||
return root;
|
||||
}
|
||||
|
||||
void _erase(size_t u) {
|
||||
if (!u) return;
|
||||
// 查找指定的值对应的节点
|
||||
node *find(const T &value) {
|
||||
node *node = root; // 从根节点开始查找
|
||||
|
||||
if (tr[u].c > 1) { // 存在重复的数
|
||||
splay(u);
|
||||
tr[u].c--;
|
||||
tr[u].s--;
|
||||
while (node != nullptr && value != node->value) {
|
||||
if (value < node->value) {
|
||||
node = node->lchild;
|
||||
} else {
|
||||
node = node->rchild;
|
||||
}
|
||||
}
|
||||
|
||||
if (node != nullptr) {
|
||||
node->splay();
|
||||
}
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
// 删除
|
||||
void erase(node *u) {
|
||||
if (u == nullptr) return;
|
||||
|
||||
if (u->count > 1) { // 存在重复的数
|
||||
u->splay();
|
||||
u->count--;
|
||||
u->size--;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
size_t pred = _predecessor(u),
|
||||
succ = _successor(u);
|
||||
node *pred = u->predecessor(),
|
||||
*succ = u->successor();
|
||||
|
||||
splay(pred); // 将前驱旋转到根节点
|
||||
splay(succ, pred); // 将后继旋转到根节点的右儿子
|
||||
pred->splay();
|
||||
succ->splay(pred);
|
||||
|
||||
tr[succ].l = 0; // 此时要删的节点为根节点的左儿子且为叶子节点
|
||||
delete succ->lchild;
|
||||
succ->lchild = nullptr;
|
||||
|
||||
// 更新节点信息
|
||||
pushup(succ);
|
||||
pushup(pred);
|
||||
succ->pushup();
|
||||
pred->pushup();
|
||||
}
|
||||
|
||||
public:
|
||||
Splay()
|
||||
: root(0), cnt(0) {
|
||||
// 插入哨兵节点
|
||||
insert(std::numeric_limits<int>::min());
|
||||
insert(std::numeric_limits<int>::max());
|
||||
: root(nullptr) {
|
||||
insert(std::numeric_limits<T>::min());
|
||||
insert(std::numeric_limits<T>::max());
|
||||
}
|
||||
|
||||
~Splay() {
|
||||
delete root;
|
||||
}
|
||||
|
||||
// 插入
|
||||
void insert(const int &v) {
|
||||
_insert(v);
|
||||
void insert(const T &value) {
|
||||
_insert(value);
|
||||
}
|
||||
|
||||
// 删除
|
||||
void erase(const int &v) {
|
||||
_erase(_find(v));
|
||||
void erase(const T &value) {
|
||||
node *node = find(value);
|
||||
|
||||
if (node == nullptr) return;
|
||||
|
||||
erase(node);
|
||||
}
|
||||
|
||||
// 排名
|
||||
unsigned rank(const int &v) {
|
||||
size_t u = _find(v);
|
||||
unsigned int rank(const T &value) {
|
||||
node *node = find(value);
|
||||
|
||||
if (!u) { // 不存在则插入一个方便查找
|
||||
u = _insert(v);
|
||||
if (node == nullptr) {
|
||||
node = _insert(value);
|
||||
// 此时 node 已经成为根节点,直接计算即可
|
||||
int res = node->lsize(); // 由于「哨兵」的存在,此处无需 -1
|
||||
erase(node);
|
||||
|
||||
// 此时 u 已经成为根节点,直接取左子树大小即可
|
||||
unsigned r = tr[tr[u].l].s;
|
||||
|
||||
_erase(u);
|
||||
|
||||
return r;
|
||||
return res;
|
||||
}
|
||||
|
||||
return tr[tr[u].l].s;
|
||||
// 此时 node 已经成为根节点,直接计算即可
|
||||
return node->lsize();
|
||||
}
|
||||
|
||||
// 选择
|
||||
const int &select(unsigned k) {
|
||||
size_t u = root;
|
||||
const T &select(int k) {
|
||||
node *node = root;
|
||||
|
||||
while (k < tr[tr[u].l].s || k >= tr[tr[u].l].s + tr[u].c) {
|
||||
if (k < tr[tr[u].l].s) {
|
||||
u = tr[u].l;
|
||||
while (k < node->lsize() || k >= node->lsize() + node->count) {
|
||||
if (k < node->lsize()) { // 所需的节点在左子树中
|
||||
node = node->lchild;
|
||||
} else {
|
||||
k -= tr[tr[u].l].s + tr[u].c;
|
||||
u = tr[u].r;
|
||||
k -= node->lsize() + node->count;
|
||||
node = node->rchild;
|
||||
}
|
||||
}
|
||||
|
||||
splay(u);
|
||||
node->splay();
|
||||
|
||||
return tr[u].v;
|
||||
return node->value;
|
||||
}
|
||||
|
||||
// 前驱
|
||||
const int &predecessor(const int &v) {
|
||||
size_t u = _find(v);
|
||||
const T &predecessor(const T &value) {
|
||||
node *node = find(value);
|
||||
|
||||
if (!u) { // 不存在则插入一个方便查找
|
||||
u = _insert(v);
|
||||
|
||||
const int &r = tr[_predecessor(u)].v;
|
||||
|
||||
_erase(u); // 删除
|
||||
|
||||
return r;
|
||||
if (node == nullptr) {
|
||||
node = _insert(value);
|
||||
const T &result = node->predecessor()->value;
|
||||
erase(node);
|
||||
return result;
|
||||
}
|
||||
|
||||
return tr[_predecessor(u)].v;
|
||||
return node->predecessor()->value;
|
||||
}
|
||||
|
||||
// 后继
|
||||
const int &successor(const int &v) {
|
||||
size_t u = _find(v);
|
||||
const T &successor(const T &value) {
|
||||
node *node = find(value);
|
||||
|
||||
if (!u) { // 不存在则插入一个方便查找
|
||||
u = _insert(v);
|
||||
|
||||
const int &r = tr[_successor(u)].v;
|
||||
|
||||
_erase(u); // 删除
|
||||
|
||||
return r;
|
||||
if (node == nullptr) {
|
||||
node = _insert(value);
|
||||
const T &result = node->successor()->value;
|
||||
erase(node);
|
||||
return result;
|
||||
}
|
||||
|
||||
return tr[_successor(u)].v;
|
||||
return node->successor()->value;
|
||||
}
|
||||
};
|
||||
|
||||
int n;
|
||||
Splay tree;
|
||||
Splay<int> tree;
|
||||
|
||||
int main() {
|
||||
std::ios::sync_with_stdio(false);
|
||||
@ -267,23 +280,42 @@ int main() {
|
||||
|
||||
cin >> n;
|
||||
|
||||
while (n--) {
|
||||
for (int i = 1; i <= n; i++) {
|
||||
int op, x;
|
||||
|
||||
cin >> op >> x;
|
||||
|
||||
if (op == 1) {
|
||||
switch (op) {
|
||||
case 1: {
|
||||
tree.insert(x);
|
||||
} else if (op == 2) {
|
||||
|
||||
break;
|
||||
}
|
||||
case 2: {
|
||||
tree.erase(x);
|
||||
} else if (op == 3) {
|
||||
|
||||
break;
|
||||
}
|
||||
case 3: {
|
||||
cout << tree.rank(x) << endl;
|
||||
} else if (op == 4) {
|
||||
|
||||
break;
|
||||
}
|
||||
case 4: {
|
||||
cout << tree.select(x) << endl;
|
||||
} else if (op == 5) {
|
||||
|
||||
break;
|
||||
}
|
||||
case 5: {
|
||||
cout << tree.predecessor(x) << endl;
|
||||
} else { // op == 6
|
||||
|
||||
break;
|
||||
}
|
||||
case 6: {
|
||||
cout << tree.successor(x) << endl;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,4 +1,6 @@
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <cstdlib>
|
||||
#include <stack>
|
||||
|
||||
using std::cin;
|
||||
@ -7,158 +9,171 @@ const char endl = '\n';
|
||||
|
||||
const int N = 1e5 + 5;
|
||||
|
||||
// Link-Cut Tree
|
||||
class LinkCutTree {
|
||||
private:
|
||||
std::stack<bool> st;
|
||||
|
||||
struct node {
|
||||
size_t l, r, f;
|
||||
unsigned v, s;
|
||||
bool rev;
|
||||
int p, // 父亲节点
|
||||
l, // 左儿子
|
||||
r; // 右儿子
|
||||
int pre;
|
||||
int val, // 节点值
|
||||
sum; // 异或和
|
||||
int key; // 权值
|
||||
bool rev; // 翻转标记
|
||||
|
||||
node()
|
||||
: l(0), r(0), f(0), s(0), v(0), rev(false) {}
|
||||
|
||||
node(unsigned _v, size_t _f)
|
||||
: l(0), r(0), f(_f), s(_v), v(_v), rev(false) {}
|
||||
|
||||
size_t &child(unsigned x) {
|
||||
return !x ? l : r;
|
||||
}
|
||||
: p(0), l(0), r(0), pre(0), val(0), sum(0), key(rand()), rev(false) {}
|
||||
} tr[N];
|
||||
|
||||
inline void pushup(size_t u) {
|
||||
tr[u].s = tr[tr[u].l].s ^ tr[u].v ^ tr[tr[u].r].s;
|
||||
void pushup(int u) {
|
||||
// 计算异或和
|
||||
tr[u].sum = tr[tr[u].l].sum ^ tr[u].val ^ tr[tr[u].r].sum;
|
||||
|
||||
// 标记父亲节点
|
||||
if (tr[u].l) tr[tr[u].l].p = u;
|
||||
if (tr[u].r) tr[tr[u].r].p = u;
|
||||
}
|
||||
|
||||
inline void pushdown(const size_t &u) {
|
||||
void pushdown(int u) {
|
||||
if (!tr[u].rev) return;
|
||||
|
||||
std::swap(tr[u].l, tr[u].r);
|
||||
tr[tr[u].l].rev = !tr[tr[u].l].rev;
|
||||
tr[tr[u].r].rev = !tr[tr[u].r].rev;
|
||||
tr[u].rev = false;
|
||||
std::swap(tr[u].l, tr[u].r);
|
||||
tr[tr[u].l].rev ^= 1;
|
||||
tr[tr[u].r].rev ^= 1;
|
||||
}
|
||||
|
||||
unsigned relation(const size_t &u) {
|
||||
return u == tr[tr[u].f].l ? 0 : 1;
|
||||
}
|
||||
|
||||
bool isRoot(const size_t &u) {
|
||||
return tr[tr[u].f].l != u && tr[tr[u].f].r != u;
|
||||
}
|
||||
|
||||
void rotate(size_t u) {
|
||||
size_t p = tr[u].f;
|
||||
unsigned x = relation(u);
|
||||
|
||||
if (!isRoot(p)) {
|
||||
tr[tr[p].f].child(relation(p)) = u;
|
||||
}
|
||||
tr[u].f = tr[p].f;
|
||||
|
||||
if (tr[u].child(x ^ 1)) {
|
||||
tr[tr[u].child(x ^ 1)].f = p;
|
||||
}
|
||||
tr[p].child(x) = tr[u].child(x ^ 1);
|
||||
|
||||
tr[u].child(x ^ 1) = p;
|
||||
tr[p].f = u;
|
||||
|
||||
pushup(p);
|
||||
std::pair<int, int> split(int u) {
|
||||
if (st.empty()) {
|
||||
pushdown(u);
|
||||
auto t = std::make_pair(u, tr[u].r);
|
||||
tr[u].r = 0;
|
||||
pushup(u);
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
void splay(size_t u) {
|
||||
std::stack<size_t> st;
|
||||
|
||||
size_t cur = u;
|
||||
st.push(cur);
|
||||
while (!isRoot(cur)) {
|
||||
st.push(tr[cur].f);
|
||||
cur = tr[cur].f;
|
||||
}
|
||||
|
||||
while (!st.empty()) {
|
||||
pushdown(st.top());
|
||||
bool d = st.top() ^ tr[u].rev;
|
||||
st.pop();
|
||||
}
|
||||
|
||||
while (!isRoot(u)) {
|
||||
if (isRoot(tr[u].f)) {
|
||||
rotate(u);
|
||||
} else if (relation(u) == relation(tr[u].f)) {
|
||||
rotate(tr[u].f);
|
||||
rotate(u);
|
||||
} else {
|
||||
rotate(u);
|
||||
rotate(u);
|
||||
}
|
||||
}
|
||||
}
|
||||
pushdown(u);
|
||||
|
||||
void access(size_t u) {
|
||||
for (size_t f = 0; u; u = tr[f = u].f) {
|
||||
splay(u);
|
||||
tr[u].r = f;
|
||||
if (d) {
|
||||
auto t = split(tr[u].l);
|
||||
tr[u].l = t.second;
|
||||
pushup(u);
|
||||
}
|
||||
|
||||
return std::make_pair(t.first, u);
|
||||
}
|
||||
|
||||
void makeRoot(const size_t &u) {
|
||||
access(u);
|
||||
splay(u);
|
||||
tr[u].rev = !tr[u].rev;
|
||||
auto t = split(tr[u].r);
|
||||
tr[u].r = t.first;
|
||||
pushup(u);
|
||||
|
||||
return std::make_pair(u, t.second);
|
||||
}
|
||||
|
||||
size_t findRoot(size_t u) {
|
||||
access(u);
|
||||
splay(u);
|
||||
// 合并
|
||||
int merge(int x, int y) {
|
||||
if (!x || !y) return x | y;
|
||||
|
||||
while (tr[u].l) {
|
||||
u = tr[u].l;
|
||||
if (tr[x].key < tr[y].key) {
|
||||
pushdown(x);
|
||||
tr[x].r = merge(tr[x].r, y);
|
||||
pushup(x);
|
||||
return x;
|
||||
}
|
||||
|
||||
pushdown(y);
|
||||
tr[y].l = merge(x, tr[y].l);
|
||||
pushup(y);
|
||||
return y;
|
||||
}
|
||||
|
||||
// 是否是根节点
|
||||
bool isRoot(int u) {
|
||||
return !tr[u].p || (tr[tr[u].p].l != u && tr[tr[u].p].r != u);
|
||||
}
|
||||
|
||||
// 查找根节点
|
||||
int findRoot(int u) {
|
||||
while (!st.empty()) st.pop();
|
||||
while (!isRoot(u)) {
|
||||
// pushdown(u);
|
||||
st.push(tr[tr[u].p].l == u);
|
||||
u = tr[u].p;
|
||||
}
|
||||
return u;
|
||||
}
|
||||
|
||||
void split(const size_t &x, const size_t &y) {
|
||||
makeRoot(x);
|
||||
access(y);
|
||||
splay(y);
|
||||
int findLeft(int u) {
|
||||
u = findRoot(u);
|
||||
pushdown(u);
|
||||
while (tr[u].l) {
|
||||
u = tr[u].l;
|
||||
pushdown(u);
|
||||
}
|
||||
return u;
|
||||
}
|
||||
|
||||
int access(int u) {
|
||||
int lst = 0;
|
||||
|
||||
while (u) {
|
||||
auto t = split(findRoot(u));
|
||||
tr[findLeft(lst)].pre = 0;
|
||||
lst = merge(t.first, lst);
|
||||
tr[findLeft(t.second)].pre = u;
|
||||
u = tr[findLeft(lst)].pre;
|
||||
}
|
||||
|
||||
return lst;
|
||||
}
|
||||
|
||||
void makeRoot(int u) {
|
||||
tr[access(u)].rev ^= 1;
|
||||
}
|
||||
|
||||
public:
|
||||
void set(int p, int v) {
|
||||
tr[p].s = tr[p].v = v;
|
||||
int getRoot(int u) {
|
||||
return findLeft(access(u));
|
||||
}
|
||||
|
||||
unsigned query(int x, int y) {
|
||||
split(x, y);
|
||||
|
||||
return tr[y].s;
|
||||
}
|
||||
|
||||
void link(const int &x, const int &y) {
|
||||
void link(int x, int y) {
|
||||
makeRoot(x);
|
||||
|
||||
if (findRoot(y) != x) {
|
||||
tr[x].f = y;
|
||||
}
|
||||
tr[x].pre = y;
|
||||
}
|
||||
|
||||
void cut(int x, int y) {
|
||||
split(x, y);
|
||||
|
||||
if (tr[y].l == x) {
|
||||
tr[y].l = 0;
|
||||
tr[x].f = 0;
|
||||
}
|
||||
makeRoot(x);
|
||||
access(y);
|
||||
access(x);
|
||||
tr[y].pre = 0;
|
||||
}
|
||||
|
||||
void change(int p, int v) {
|
||||
access(p);
|
||||
splay(p);
|
||||
tr[p].v = v;
|
||||
pushup(p);
|
||||
int query(int x, int y) {
|
||||
makeRoot(x);
|
||||
access(y);
|
||||
|
||||
auto t = split(findRoot(y));
|
||||
int res = tr[t.first].sum;
|
||||
merge(t.first, t.second);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void change(int u, int val) {
|
||||
makeRoot(u);
|
||||
auto t = split(findRoot(u));
|
||||
tr[u].val = val;
|
||||
merge(t.first, t.second);
|
||||
}
|
||||
|
||||
void set(int u, int val) {
|
||||
tr[u].sum = tr[u].val = val;
|
||||
}
|
||||
} lct;
|
||||
|
||||
@ -188,7 +203,9 @@ int main() {
|
||||
break;
|
||||
}
|
||||
case 1: {
|
||||
if (lct.getRoot(x) != lct.getRoot(y)) {
|
||||
lct.link(x, y);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
209
S2OJ/102/102.cpp
209
S2OJ/102/102.cpp
@ -1,209 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <stack>
|
||||
|
||||
using std::cin;
|
||||
using std::cout;
|
||||
const char endl = '\n';
|
||||
|
||||
const int N = 3e5 + 5;
|
||||
|
||||
class LinkCutTree {
|
||||
private:
|
||||
struct node {
|
||||
size_t l, r, f;
|
||||
unsigned v, s;
|
||||
bool rev;
|
||||
|
||||
node()
|
||||
: l(0), r(0), f(0), s(0), v(0), rev(false) {}
|
||||
|
||||
node(unsigned _v, size_t _f)
|
||||
: l(0), r(0), f(_f), s(_v), v(_v), rev(false) {}
|
||||
|
||||
size_t &child(unsigned x) {
|
||||
return !x ? l : r;
|
||||
}
|
||||
} tr[N];
|
||||
|
||||
inline void pushup(size_t u) {
|
||||
tr[u].s = tr[tr[u].l].s ^ tr[u].v ^ tr[tr[u].r].s;
|
||||
}
|
||||
|
||||
inline void pushdown(const size_t &u) {
|
||||
if (!tr[u].rev) return;
|
||||
|
||||
std::swap(tr[u].l, tr[u].r);
|
||||
tr[tr[u].l].rev = !tr[tr[u].l].rev;
|
||||
tr[tr[u].r].rev = !tr[tr[u].r].rev;
|
||||
tr[u].rev = false;
|
||||
}
|
||||
|
||||
unsigned relation(const size_t &u) {
|
||||
return u == tr[tr[u].f].l ? 0 : 1;
|
||||
}
|
||||
|
||||
bool isRoot(const size_t &u) {
|
||||
return tr[tr[u].f].l != u && tr[tr[u].f].r != u;
|
||||
}
|
||||
|
||||
void rotate(size_t u) {
|
||||
size_t p = tr[u].f;
|
||||
unsigned x = relation(u);
|
||||
|
||||
if (!isRoot(p)) {
|
||||
tr[tr[p].f].child(relation(p)) = u;
|
||||
}
|
||||
tr[u].f = tr[p].f;
|
||||
|
||||
if (tr[u].child(x ^ 1)) {
|
||||
tr[tr[u].child(x ^ 1)].f = p;
|
||||
}
|
||||
tr[p].child(x) = tr[u].child(x ^ 1);
|
||||
|
||||
tr[u].child(x ^ 1) = p;
|
||||
tr[p].f = u;
|
||||
|
||||
pushup(p);
|
||||
pushup(u);
|
||||
}
|
||||
|
||||
void splay(size_t u) {
|
||||
std::stack<size_t> st;
|
||||
|
||||
size_t cur = u;
|
||||
st.push(cur);
|
||||
while (!isRoot(cur)) {
|
||||
st.push(tr[cur].f);
|
||||
cur = tr[cur].f;
|
||||
}
|
||||
|
||||
while (!st.empty()) {
|
||||
pushdown(st.top());
|
||||
st.pop();
|
||||
}
|
||||
|
||||
while (!isRoot(u)) {
|
||||
if (isRoot(tr[u].f)) {
|
||||
rotate(u);
|
||||
} else if (relation(u) == relation(tr[u].f)) {
|
||||
rotate(tr[u].f);
|
||||
rotate(u);
|
||||
} else {
|
||||
rotate(u);
|
||||
rotate(u);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void access(size_t u) {
|
||||
for (size_t f = 0; u; u = tr[f = u].f) {
|
||||
splay(u);
|
||||
tr[u].r = f;
|
||||
pushup(u);
|
||||
}
|
||||
}
|
||||
|
||||
void makeRoot(const size_t &u) {
|
||||
access(u);
|
||||
splay(u);
|
||||
tr[u].rev = !tr[u].rev;
|
||||
}
|
||||
|
||||
size_t findRoot(size_t u) {
|
||||
access(u);
|
||||
splay(u);
|
||||
|
||||
while (tr[u].l) {
|
||||
u = tr[u].l;
|
||||
}
|
||||
|
||||
return u;
|
||||
}
|
||||
|
||||
void split(const size_t &x, const size_t &y) {
|
||||
makeRoot(x);
|
||||
access(y);
|
||||
splay(y);
|
||||
}
|
||||
|
||||
public:
|
||||
void set(int p, int v) {
|
||||
tr[p].s = tr[p].v = v;
|
||||
}
|
||||
|
||||
unsigned query(int x, int y) {
|
||||
split(x, y);
|
||||
|
||||
return tr[y].s;
|
||||
}
|
||||
|
||||
void link(const int &x, const int &y) {
|
||||
makeRoot(x);
|
||||
|
||||
if (findRoot(y) != x) {
|
||||
tr[x].f = y;
|
||||
}
|
||||
}
|
||||
|
||||
void cut(int x, int y) {
|
||||
split(x, y);
|
||||
|
||||
if (tr[y].l == x) {
|
||||
tr[y].l = 0;
|
||||
tr[x].f = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void change(int p, int v) {
|
||||
access(p);
|
||||
splay(p);
|
||||
tr[p].v = v;
|
||||
pushup(p);
|
||||
}
|
||||
} lct;
|
||||
|
||||
int n, m;
|
||||
|
||||
int main() {
|
||||
std::ios::sync_with_stdio(false);
|
||||
cin.tie(nullptr);
|
||||
|
||||
cin >> n >> m;
|
||||
|
||||
for (int i = 1, x; i <= n; i++) {
|
||||
cin >> x;
|
||||
|
||||
lct.set(i, x);
|
||||
}
|
||||
|
||||
while (m--) {
|
||||
int op, x, y;
|
||||
|
||||
cin >> op >> x >> y;
|
||||
|
||||
switch (op) {
|
||||
case 0: {
|
||||
cout << lct.query(x, y) << endl;
|
||||
|
||||
break;
|
||||
}
|
||||
case 1: {
|
||||
lct.link(x, y);
|
||||
|
||||
break;
|
||||
}
|
||||
case 2: {
|
||||
lct.cut(x, y);
|
||||
|
||||
break;
|
||||
}
|
||||
case 3: {
|
||||
lct.change(x, y);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
BIN
S2OJ/102/data/problem.conf
(Stored with Git LFS)
BIN
S2OJ/102/data/problem.conf
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree1.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree1.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree1.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree1.in
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree10.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree10.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree10.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree10.in
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree2.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree2.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree2.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree2.in
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree3.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree3.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree3.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree3.in
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree4.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree4.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree4.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree4.in
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree5.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree5.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree5.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree5.in
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree6.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree6.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree6.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree6.in
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree7.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree7.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree7.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree7.in
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree8.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree8.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree8.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree8.in
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree9.ans
(Stored with Git LFS)
BIN
S2OJ/102/data/tree9.ans
(Stored with Git LFS)
Binary file not shown.
BIN
S2OJ/102/data/tree9.in
(Stored with Git LFS)
BIN
S2OJ/102/data/tree9.in
(Stored with Git LFS)
Binary file not shown.
Loading…
Reference in New Issue
Block a user