0
1
mirror of https://git.sb/baoshuo/OI-codes.git synced 2024-11-23 21:28:48 +00:00

#108. 多项式乘法

https://loj.ac/s/1645583
This commit is contained in:
Baoshuo Ren 2022-11-28 21:31:18 +08:00
parent 2d8749d2cf
commit ad905a9376
Signed by: baoshuo
GPG Key ID: 00CB9680AB29F51A

View File

@ -2,7 +2,7 @@
#include <algorithm>
#include <cmath>
#include <complex>
#include <vector>
#include <valarray>
using std::cin;
using std::cout;
@ -10,27 +10,22 @@ const char endl = '\n';
const double PI = std::acos(-1);
void FFT(std::vector<std::complex<double>>& a) {
void fast_fourier_transform(std::valarray<std::complex<double>>& a) {
if (a.size() == 1) return;
int m = a.size() >> 1;
std::vector<std::complex<double>> a0, a1;
std::valarray<std::complex<double>>
even = a[std::slice(0, m, 2)],
odd = a[std::slice(1, m, 2)];
fast_fourier_transform(even);
fast_fourier_transform(odd);
for (int i = 0; i < m; i++) {
a0.emplace_back(a[i << 1]);
a1.emplace_back(a[i << 1 | 1]);
}
FFT(a0), FFT(a1);
std::complex<double>
w0{std::cos(PI / m), std::sin(PI / m)},
w1{1.0, 0.0};
for (int i = 0; i < m; i++) {
a[i] = a0[i] + w1 * a1[i];
a[i + m] = a0[i] - w1 * a1[i];
w1 *= w0;
auto t = std::polar(1.0, -2 * PI * i / a.size()) * odd[i];
a[i] = even[i] + t;
a[i + m] = even[i] - t;
}
}
@ -43,7 +38,7 @@ int main() {
cin >> n >> m;
int k = 1 << (std::__lg(n + m) + 1);
std::vector<std::complex<double>> f(k), g(k);
std::valarray<std::complex<double>> f(k), g(k);
for (int i = 0; i <= n; i++) {
cin >> f[i];
@ -53,14 +48,15 @@ int main() {
cin >> g[i];
}
FFT(f), FFT(g);
fast_fourier_transform(f);
fast_fourier_transform(g);
for (int i = 0; i < k; i++) {
f[i] *= g[i];
}
FFT(f);
std::reverse(f.begin() + 1, f.end());
fast_fourier_transform(f);
std::reverse(std::begin(f) + 1, std::end(f));
for (int i = 0; i <= n + m; i++) {
cout << static_cast<int>(std::round(f[i].real() / k)) << ' ';