mirror of
https://git.sb/baoshuo/OI-codes.git
synced 2024-11-23 19:48:51 +00:00
parent
9b2b21aec6
commit
ab77c54b7f
@ -1,172 +1,323 @@
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <limits>
|
||||
|
||||
using std::cin;
|
||||
using std::cout;
|
||||
#define endl '\n'
|
||||
const char endl = '\n';
|
||||
|
||||
const int N = 1e5 + 5;
|
||||
|
||||
class Treap {
|
||||
template <typename T>
|
||||
class Splay {
|
||||
private:
|
||||
struct node {
|
||||
node *left, *right;
|
||||
int size, val, key;
|
||||
T value;
|
||||
node *lchild, *rchild, *parent, **root;
|
||||
std::size_t size, count;
|
||||
|
||||
node()
|
||||
: left(nullptr),
|
||||
right(nullptr),
|
||||
size(1),
|
||||
val(0),
|
||||
key(rand()) {}
|
||||
: value(0), lchild(nullptr), rchild(nullptr), parent(nullptr), root(nullptr), size(0), count(0) {}
|
||||
|
||||
node(int _val)
|
||||
: left(nullptr),
|
||||
right(nullptr),
|
||||
size(1),
|
||||
val(_val),
|
||||
key(rand()) {}
|
||||
node(const T &_value, node *_parent, node **_root)
|
||||
: value(_value), lchild(nullptr), rchild(nullptr), parent(_parent), root(_root), size(1), count(1) {}
|
||||
|
||||
~node() {
|
||||
delete left, right;
|
||||
if (lchild != nullptr) delete lchild;
|
||||
if (rchild != nullptr) delete rchild;
|
||||
}
|
||||
|
||||
inline void pushup() {
|
||||
this->size = 1;
|
||||
if (this->left != nullptr) this->size += this->left->size;
|
||||
if (this->right != nullptr) this->size += this->right->size;
|
||||
node *&child(unsigned int x) {
|
||||
return !x ? lchild : rchild;
|
||||
}
|
||||
} *root = nullptr;
|
||||
|
||||
int getNodeSize(node *);
|
||||
node *find(node *, int);
|
||||
std::pair<node *, node *> split(node *, int);
|
||||
std::pair<node *, node *> splitByValue(node *, int);
|
||||
node *merge(node *, node *);
|
||||
int _getRank(node *, int);
|
||||
unsigned int relation() const {
|
||||
// 如果当前节点是其父亲节点的左儿子则返回 0,否则返回 1
|
||||
return this == parent->lchild ? 0 : 1;
|
||||
}
|
||||
|
||||
// 左儿子大小
|
||||
std::size_t lsize() const {
|
||||
return lchild == nullptr ? 0 : lchild->size;
|
||||
}
|
||||
|
||||
// 右儿子大小
|
||||
std::size_t rsize() const {
|
||||
return rchild == nullptr ? 0 : rchild->size;
|
||||
}
|
||||
|
||||
// 上传信息
|
||||
void pushup() {
|
||||
size = lsize() + count + rsize();
|
||||
}
|
||||
|
||||
// 旋转
|
||||
void rotate() {
|
||||
node *old = parent;
|
||||
unsigned int x = relation();
|
||||
|
||||
if (old->parent != nullptr) {
|
||||
old->parent->child(old->relation()) = this;
|
||||
}
|
||||
parent = old->parent;
|
||||
|
||||
old->child(x) = child(x ^ 1);
|
||||
if (child(x ^ 1) != nullptr) {
|
||||
child(x ^ 1)->parent = old;
|
||||
}
|
||||
|
||||
child(x ^ 1) = old;
|
||||
old->parent = this;
|
||||
|
||||
old->pushup();
|
||||
pushup();
|
||||
|
||||
if (parent == nullptr) *root = this;
|
||||
}
|
||||
|
||||
// Splay
|
||||
void splay(node *target = nullptr) {
|
||||
while (parent != target) {
|
||||
if (parent->parent == target) { // 父节点是目标节点
|
||||
rotate();
|
||||
} else if (relation() == parent->relation()) { // 关系相同
|
||||
parent->rotate();
|
||||
rotate();
|
||||
} else {
|
||||
rotate();
|
||||
rotate();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 前驱:左子树的最右点
|
||||
node *predecessor() {
|
||||
node *pred = lchild;
|
||||
|
||||
while (pred->rchild != nullptr) {
|
||||
pred = pred->rchild;
|
||||
}
|
||||
|
||||
return pred;
|
||||
}
|
||||
|
||||
// 后继:右子树的最左点
|
||||
node *successor() {
|
||||
node *succ = rchild;
|
||||
|
||||
while (succ->lchild != nullptr) {
|
||||
succ = succ->lchild;
|
||||
}
|
||||
|
||||
return succ;
|
||||
}
|
||||
} * root;
|
||||
|
||||
// 插入(内部函数)
|
||||
node *_insert(const T &value) {
|
||||
node **target = &root, *parent = nullptr;
|
||||
|
||||
while (*target != nullptr && (*target)->value != value) {
|
||||
parent = *target;
|
||||
parent->size++;
|
||||
|
||||
// 根据大小向左右子树迭代
|
||||
if (value < parent->value) {
|
||||
target = &parent->lchild;
|
||||
} else {
|
||||
target = &parent->rchild;
|
||||
}
|
||||
}
|
||||
|
||||
if (*target == nullptr) {
|
||||
*target = new node(value, parent, &root);
|
||||
} else {
|
||||
(*target)->count++;
|
||||
(*target)->size++;
|
||||
}
|
||||
|
||||
(*target)->splay();
|
||||
|
||||
return root;
|
||||
}
|
||||
|
||||
// 查找指定的值对应的节点
|
||||
node *find(const T &value) {
|
||||
node *node = root; // 从根节点开始查找
|
||||
|
||||
while (node != nullptr && value != node->value) {
|
||||
if (value < node->value) {
|
||||
node = node->lchild;
|
||||
} else {
|
||||
node = node->rchild;
|
||||
}
|
||||
}
|
||||
|
||||
if (node != nullptr) {
|
||||
node->splay();
|
||||
}
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
// 删除
|
||||
void erase(node *u) {
|
||||
if (u == nullptr) return;
|
||||
|
||||
if (u->count > 1) { // 存在重复的数
|
||||
u->splay();
|
||||
u->count--;
|
||||
u->size--;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
node *pred = u->predecessor(),
|
||||
*succ = u->successor();
|
||||
|
||||
pred->splay();
|
||||
succ->splay(pred);
|
||||
|
||||
delete succ->lchild;
|
||||
succ->lchild = nullptr;
|
||||
|
||||
succ->pushup();
|
||||
pred->pushup();
|
||||
}
|
||||
|
||||
public:
|
||||
Treap()
|
||||
: root(nullptr) {}
|
||||
|
||||
void insert(int);
|
||||
void erase(int);
|
||||
int getRank(int);
|
||||
int getKth(int);
|
||||
} tree;
|
||||
|
||||
inline int Treap::getNodeSize(Treap::node *node) {
|
||||
return node == nullptr ? 0 : node->size;
|
||||
}
|
||||
|
||||
std::pair<Treap::node *, Treap::node *> Treap::split(Treap::node *p, int k) {
|
||||
if (p == nullptr) return std::make_pair(nullptr, nullptr);
|
||||
std::pair<Treap::node *, Treap::node *> o;
|
||||
if (k <= this->getNodeSize(p->left)) {
|
||||
o = this->split(p->left, k);
|
||||
p->left = o.second;
|
||||
p->pushup();
|
||||
o.second = p;
|
||||
} else {
|
||||
o = this->split(p->right, k - this->getNodeSize(p->left) - 1);
|
||||
p->right = o.first;
|
||||
p->pushup();
|
||||
o.first = p;
|
||||
Splay()
|
||||
: root(nullptr) {
|
||||
insert(std::numeric_limits<T>::min());
|
||||
insert(std::numeric_limits<T>::max());
|
||||
}
|
||||
return o;
|
||||
}
|
||||
|
||||
std::pair<Treap::node *, Treap::node *> Treap::splitByValue(Treap::node *p, int val) {
|
||||
if (p == nullptr) return std::make_pair(nullptr, nullptr);
|
||||
std::pair<Treap::node *, Treap::node *> o;
|
||||
if (p->val < val) {
|
||||
o = this->splitByValue(p->right, val);
|
||||
p->right = o.first;
|
||||
p->pushup();
|
||||
o.first = p;
|
||||
} else {
|
||||
o = this->splitByValue(p->left, val);
|
||||
p->left = o.second;
|
||||
p->pushup();
|
||||
o.second = p;
|
||||
~Splay() {
|
||||
delete root;
|
||||
}
|
||||
return o;
|
||||
}
|
||||
|
||||
Treap::node *Treap::merge(Treap::node *x, Treap::node *y) {
|
||||
if (x == nullptr) return y;
|
||||
if (y == nullptr) return x;
|
||||
if (x->key > y->key) {
|
||||
x->right = this->merge(x->right, y);
|
||||
x->pushup();
|
||||
return x;
|
||||
// 插入
|
||||
void insert(const T &value) {
|
||||
_insert(value);
|
||||
}
|
||||
y->left = this->merge(x, y->left);
|
||||
y->pushup();
|
||||
return y;
|
||||
}
|
||||
|
||||
Treap::node *Treap::find(Treap::node *p, int val) {
|
||||
if (p == nullptr) return nullptr;
|
||||
if (p->val == val) return p;
|
||||
if (p->val > val) return this->find(p->left, val);
|
||||
return this->find(p->right, val);
|
||||
}
|
||||
// 删除
|
||||
void erase(const T &value) {
|
||||
node *node = find(value);
|
||||
|
||||
void Treap::insert(int val) {
|
||||
auto o = this->splitByValue(this->root, val);
|
||||
o.first = this->merge(o.first, new Treap::node(val));
|
||||
this->root = this->merge(o.first, o.second);
|
||||
}
|
||||
if (node == nullptr) return;
|
||||
|
||||
void Treap::erase(int val) {
|
||||
auto o = this->splitByValue(this->root, val);
|
||||
auto t = o;
|
||||
if (this->find(o.second, val) != nullptr) {
|
||||
t = this->split(o.second, 1);
|
||||
delete t.first;
|
||||
erase(node);
|
||||
}
|
||||
this->root = this->merge(o.first, t.second);
|
||||
}
|
||||
|
||||
int Treap::_getRank(Treap::node *p, int val) {
|
||||
if (p == nullptr) return 1;
|
||||
if (val <= p->val) return this->_getRank(p->left, val);
|
||||
return this->getNodeSize(p->left) + 1 + this->_getRank(p->right, val);
|
||||
}
|
||||
// 排名
|
||||
unsigned int rank(const T &value) {
|
||||
node *node = find(value);
|
||||
|
||||
inline int Treap::getRank(int val) {
|
||||
return this->_getRank(this->root, val);
|
||||
}
|
||||
if (node == nullptr) {
|
||||
node = _insert(value);
|
||||
// 此时 node 已经成为根节点,直接计算即可
|
||||
int res = node->lsize(); // 由于「哨兵」的存在,此处无需 -1
|
||||
erase(node);
|
||||
|
||||
int Treap::getKth(int k) {
|
||||
auto x = this->split(this->root, k - 1);
|
||||
auto y = this->split(x.second, 1);
|
||||
Treap::node *o = y.first;
|
||||
this->root = this->merge(x.first, this->merge(y.first, y.second));
|
||||
return o == nullptr ? -1 : o->val;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
int n, op, x;
|
||||
// 此时 node 已经成为根节点,直接计算即可
|
||||
return node->lsize();
|
||||
}
|
||||
|
||||
// 选择
|
||||
const T &select(int k) {
|
||||
node *node = root;
|
||||
|
||||
while (k < node->lsize() || k >= node->lsize() + node->count) {
|
||||
if (k < node->lsize()) { // 所需的节点在左子树中
|
||||
node = node->lchild;
|
||||
} else {
|
||||
k -= node->lsize() + node->count;
|
||||
node = node->rchild;
|
||||
}
|
||||
}
|
||||
|
||||
node->splay();
|
||||
|
||||
return node->value;
|
||||
}
|
||||
|
||||
// 前驱
|
||||
const T &predecessor(const T &value) {
|
||||
node *node = find(value);
|
||||
|
||||
if (node == nullptr) {
|
||||
node = _insert(value);
|
||||
const T &result = node->predecessor()->value;
|
||||
erase(node);
|
||||
return result;
|
||||
}
|
||||
|
||||
return node->predecessor()->value;
|
||||
}
|
||||
|
||||
// 后继
|
||||
const T &successor(const T &value) {
|
||||
node *node = find(value);
|
||||
|
||||
if (node == nullptr) {
|
||||
node = _insert(value);
|
||||
const T &result = node->successor()->value;
|
||||
erase(node);
|
||||
return result;
|
||||
}
|
||||
|
||||
return node->successor()->value;
|
||||
}
|
||||
};
|
||||
|
||||
int n;
|
||||
Splay<int> tree;
|
||||
|
||||
int main() {
|
||||
std::ios::sync_with_stdio(false);
|
||||
cin.tie(nullptr);
|
||||
|
||||
cin >> n;
|
||||
while (n--) {
|
||||
|
||||
for (int i = 1; i <= n; i++) {
|
||||
int op, x;
|
||||
|
||||
cin >> op >> x;
|
||||
if (op == 1) {
|
||||
tree.insert(x);
|
||||
} else if (op == 2) {
|
||||
tree.erase(x);
|
||||
} else if (op == 3) {
|
||||
cout << tree.getRank(x) << endl;
|
||||
} else if (op == 4) {
|
||||
cout << tree.getKth(x) << endl;
|
||||
} else if (op == 5) {
|
||||
cout << tree.getKth(tree.getRank(x) - 1) << endl;
|
||||
} else {
|
||||
cout << tree.getKth(tree.getRank(x + 1) /* + 1*/) << endl;
|
||||
|
||||
switch (op) {
|
||||
case 1: {
|
||||
tree.insert(x);
|
||||
|
||||
break;
|
||||
}
|
||||
case 2: {
|
||||
tree.erase(x);
|
||||
|
||||
break;
|
||||
}
|
||||
case 3: {
|
||||
cout << tree.rank(x) << endl;
|
||||
|
||||
break;
|
||||
}
|
||||
case 4: {
|
||||
cout << tree.select(x) << endl;
|
||||
|
||||
break;
|
||||
}
|
||||
case 5: {
|
||||
cout << tree.predecessor(x) << endl;
|
||||
|
||||
break;
|
||||
}
|
||||
case 6: {
|
||||
cout << tree.successor(x) << endl;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user