0
1
mirror of https://git.sb/baoshuo/OI-codes.git synced 2024-11-23 19:48:51 +00:00

#108. 多项式乘法

https://loj.ac/s/1646626
This commit is contained in:
Baoshuo Ren 2022-11-30 22:02:45 +08:00
parent 4e1c72a8e0
commit 943535eba5
Signed by: baoshuo
GPG Key ID: 00CB9680AB29F51A

View File

@ -1,16 +1,28 @@
#include <iostream>
#include <algorithm>
#include <cmath>
#include <complex>
#include <valarray>
using std::cin;
using std::cout;
const char endl = '\n';
const double PI = std::acos(-1);
const int mod = 998244353;
void fast_fourier_transform(std::valarray<std::complex<double>>& a) {
constexpr long long binpow(long long a, long long b) {
a %= mod;
long long res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
void number_theoretic_transform(std::valarray<long long>& a) {
if (a.size() == 1) return;
// assert(a.size() == 1 << std::__lg(a.size()));
@ -29,18 +41,20 @@ void fast_fourier_transform(std::valarray<std::complex<double>>& a) {
}
for (int len = 2; len <= a.size(); len <<= 1) {
std::complex<double> wlen(std::cos(2 * PI / len), std::sin(2 * PI / len));
int m = len >> 1;
long long wlen = binpow(3, (mod - 1) / len);
for (int i = 0; i < a.size(); i += len) {
std::complex<double> w(1);
long long w = 1;
for (int j = 0; j < len / 2; j++) {
std::complex<double> u = a[i + j],
v = a[i + j + len / 2] * w;
for (int j = 0; j < m; j++) {
long long u = a[i + j],
v = a[i + j + m] * w % mod;
a[i + j] = u + v;
a[i + j + len / 2] = u - v;
w *= wlen;
a[i + j] = (u + v) % mod;
a[i + j + m] = ((u - v) % mod + mod) % mod;
w = w * wlen % mod;
}
}
}
@ -54,8 +68,9 @@ int main() {
cin >> n >> m;
int k = 1 << (std::__lg(n + m) + 1);
std::valarray<std::complex<double>> f(k), g(k);
int k = 1 << (std::__lg(n + m) + 1),
inv = binpow(k, mod - 2);
std::valarray<long long> f(k), g(k);
for (int i = 0; i <= n; i++) {
cin >> f[i];
@ -65,18 +80,18 @@ int main() {
cin >> g[i];
}
fast_fourier_transform(f);
fast_fourier_transform(g);
number_theoretic_transform(f);
number_theoretic_transform(g);
for (int i = 0; i < k; i++) {
f[i] *= g[i];
}
fast_fourier_transform(f);
number_theoretic_transform(f);
std::reverse(std::begin(f) + 1, std::end(f));
for (int i = 0; i <= n + m; i++) {
cout << static_cast<int>(std::round(f[i].real() / k)) << ' ';
cout << f[i] * inv % mod << ' ';
}
cout << endl;