mirror of
https://git.sb/baoshuo/OI-codes.git
synced 2025-01-24 00:12:02 +00:00
parent
4e1c72a8e0
commit
943535eba5
@ -1,16 +1,28 @@
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <complex>
|
||||
#include <valarray>
|
||||
|
||||
using std::cin;
|
||||
using std::cout;
|
||||
const char endl = '\n';
|
||||
|
||||
const double PI = std::acos(-1);
|
||||
const int mod = 998244353;
|
||||
|
||||
void fast_fourier_transform(std::valarray<std::complex<double>>& a) {
|
||||
constexpr long long binpow(long long a, long long b) {
|
||||
a %= mod;
|
||||
|
||||
long long res = 1;
|
||||
|
||||
while (b) {
|
||||
if (b & 1) res = res * a % mod;
|
||||
a = a * a % mod;
|
||||
b >>= 1;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void number_theoretic_transform(std::valarray<long long>& a) {
|
||||
if (a.size() == 1) return;
|
||||
|
||||
// assert(a.size() == 1 << std::__lg(a.size()));
|
||||
@ -29,18 +41,20 @@ void fast_fourier_transform(std::valarray<std::complex<double>>& a) {
|
||||
}
|
||||
|
||||
for (int len = 2; len <= a.size(); len <<= 1) {
|
||||
std::complex<double> wlen(std::cos(2 * PI / len), std::sin(2 * PI / len));
|
||||
int m = len >> 1;
|
||||
|
||||
long long wlen = binpow(3, (mod - 1) / len);
|
||||
|
||||
for (int i = 0; i < a.size(); i += len) {
|
||||
std::complex<double> w(1);
|
||||
long long w = 1;
|
||||
|
||||
for (int j = 0; j < len / 2; j++) {
|
||||
std::complex<double> u = a[i + j],
|
||||
v = a[i + j + len / 2] * w;
|
||||
for (int j = 0; j < m; j++) {
|
||||
long long u = a[i + j],
|
||||
v = a[i + j + m] * w % mod;
|
||||
|
||||
a[i + j] = u + v;
|
||||
a[i + j + len / 2] = u - v;
|
||||
w *= wlen;
|
||||
a[i + j] = (u + v) % mod;
|
||||
a[i + j + m] = ((u - v) % mod + mod) % mod;
|
||||
w = w * wlen % mod;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -54,8 +68,9 @@ int main() {
|
||||
|
||||
cin >> n >> m;
|
||||
|
||||
int k = 1 << (std::__lg(n + m) + 1);
|
||||
std::valarray<std::complex<double>> f(k), g(k);
|
||||
int k = 1 << (std::__lg(n + m) + 1),
|
||||
inv = binpow(k, mod - 2);
|
||||
std::valarray<long long> f(k), g(k);
|
||||
|
||||
for (int i = 0; i <= n; i++) {
|
||||
cin >> f[i];
|
||||
@ -65,18 +80,18 @@ int main() {
|
||||
cin >> g[i];
|
||||
}
|
||||
|
||||
fast_fourier_transform(f);
|
||||
fast_fourier_transform(g);
|
||||
number_theoretic_transform(f);
|
||||
number_theoretic_transform(g);
|
||||
|
||||
for (int i = 0; i < k; i++) {
|
||||
f[i] *= g[i];
|
||||
}
|
||||
|
||||
fast_fourier_transform(f);
|
||||
number_theoretic_transform(f);
|
||||
std::reverse(std::begin(f) + 1, std::end(f));
|
||||
|
||||
for (int i = 0; i <= n + m; i++) {
|
||||
cout << static_cast<int>(std::round(f[i].real() / k)) << ' ';
|
||||
cout << f[i] * inv % mod << ' ';
|
||||
}
|
||||
|
||||
cout << endl;
|
||||
|
Loading…
Reference in New Issue
Block a user