0
1
mirror of https://git.sb/baoshuo/OI-codes.git synced 2024-11-23 22:48:48 +00:00

P3803 【模板】多项式乘法(FFT)

https://www.luogu.com.cn/record/96249847
This commit is contained in:
Baoshuo Ren 2022-12-01 21:00:00 +08:00
parent 943535eba5
commit 0e15fbd4d0
Signed by: baoshuo
GPG Key ID: 00CB9680AB29F51A

View File

@ -1,39 +1,108 @@
#include <iostream>
#include <algorithm>
#include <cmath>
#include <complex>
#include <vector>
using std::cin;
using std::cout;
const char endl = '\n';
const double PI = std::acos(-1);
const int mod = 998244353;
void FFT(std::vector<std::complex<double>>& a) {
if (a.size() == 1) return;
constexpr long long binpow(long long a, long long b) {
a %= mod;
int m = a.size() >> 1;
std::vector<std::complex<double>> a0, a1;
long long res = 1;
for (int i = 0; i < m; i++) {
a0.emplace_back(a[i << 1]);
a1.emplace_back(a[i << 1 | 1]);
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
FFT(a0), FFT(a1);
return res;
}
std::complex<double>
w0{std::cos(PI / m), std::sin(PI / m)},
w1{1.0, 0.0};
std::vector<long long> number_theoretic_transform(std::vector<long long> a) {
// assert(a.size() == (1 << std::__lg(a.size())));
int k = std::__lg(a.size());
for (int i = 0; i < m; i++) {
a[i] = a0[i] + w1 * a1[i];
a[i + m] = a0[i] - w1 * a1[i];
w1 *= w0;
for (int i = 0; i < a.size(); i++) {
int t = 0;
for (int j = 0; j < k; j++) {
if (i & (1 << j)) {
t |= 1 << (k - j - 1);
}
}
if (i < t) std::swap(a[i], a[t]);
}
for (int len = 2; len <= a.size(); len <<= 1) {
int m = len >> 1;
long long wn = binpow(3, (mod - 1) / len);
for (int i = 0; i < a.size(); i += len) {
long long w = 1;
for (int j = 0; j < m; j++) {
long long u = a[i + j],
v = a[i + j + m] * w % mod;
a[i + j] = ((u + v) % mod + mod) % mod;
a[i + j + m] = ((u - v) % mod + mod) % mod;
w = w * wn % mod;
}
}
}
return a;
}
class Poly : public std::vector<long long> {
private:
public:
using std::vector<long long>::vector;
Poly() = default;
Poly(const std::vector<long long> &__v)
: std::vector<long long>(__v) {}
Poly(std::vector<long long> &&__v)
: std::vector<long long>(std::move(__v)) {}
Poly operator*(const Poly &b) const {
int n = size() - 1,
m = b.size() - 1,
k = 1 << (std::__lg(n + m) + 1),
inv = binpow(k, mod - 2);
std::vector<long long> f(*this), g(b);
f.resize(k);
f = number_theoretic_transform(f);
g.resize(k);
g = number_theoretic_transform(g);
for (int i = 0; i < k; i++) {
f[i] = f[i] * g[i] % mod;
}
f = number_theoretic_transform(f);
// assert(f.size() > 0)
std::reverse(f.begin() + 1, f.end());
std::vector<long long> res(n + m + 1);
for (int i = 0; i <= n + m; i++) {
res[i] = f[i] * inv % mod;
}
return Poly(res);
}
} poly;
int main() {
std::ios::sync_with_stdio(false);
cin.tie(nullptr);
@ -42,8 +111,7 @@ int main() {
cin >> n >> m;
int k = 1 << (std::__lg(n + m) + 1);
std::vector<std::complex<double>> f(k), g(k);
Poly f(n + 1), g(m + 1);
for (int i = 0; i <= n; i++) {
cin >> f[i];
@ -53,18 +121,9 @@ int main() {
cin >> g[i];
}
FFT(f), FFT(g);
auto res = f * g;
for (int i = 0; i < k; i++) {
f[i] *= g[i];
}
FFT(f);
std::reverse(f.begin() + 1, f.end());
for (int i = 0; i <= n + m; i++) {
cout << static_cast<int>(std::round(f[i].real() / k)) << ' ';
}
for (int x : res) cout << x << ' ';
cout << endl;