mirror of
https://git.sb/baoshuo/OI-codes.git
synced 2025-01-12 22:11:59 +00:00
244 lines
9.5 KiB
C++
244 lines
9.5 KiB
C++
|
#include <bits/stdc++.h>
|
||
|
|
||
|
using namespace std;
|
||
|
|
||
|
class BigInt {
|
||
|
public:
|
||
|
int sign;
|
||
|
std::string s;
|
||
|
|
||
|
BigInt() {
|
||
|
s = "";
|
||
|
}
|
||
|
|
||
|
BigInt(std::string x) {
|
||
|
*this = x;
|
||
|
}
|
||
|
|
||
|
BigInt(int x) {
|
||
|
*this = std::to_string(x);
|
||
|
}
|
||
|
|
||
|
BigInt negative() {
|
||
|
BigInt x = *this;
|
||
|
x.sign *= -1;
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
BigInt normalize(int newSign) {
|
||
|
for (int a = s.size() - 1; a > 0 && s[a] == '0'; a--) {
|
||
|
s.erase(s.begin() + a);
|
||
|
}
|
||
|
sign = (s.size() == 1 && s[0] == '0' ? 1 : newSign);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
void operator=(std::string x) {
|
||
|
int newSign = (x[0] == '-' ? -1 : 1);
|
||
|
s = (newSign == -1 ? x.substr(1) : x);
|
||
|
std::reverse(s.begin(), s.end());
|
||
|
this->normalize(newSign);
|
||
|
}
|
||
|
|
||
|
bool operator==(const BigInt& x) const {
|
||
|
return (s == x.s && sign == x.sign);
|
||
|
}
|
||
|
|
||
|
bool operator<(const BigInt& x) const {
|
||
|
if (sign != x.sign) {
|
||
|
return sign < x.sign;
|
||
|
}
|
||
|
if (s.size() != x.s.size()) {
|
||
|
return (sign == 1 ? s.size() < x.s.size() : s.size() > x.s.size());
|
||
|
}
|
||
|
for (int a = s.size() - 1; a >= 0; a--) {
|
||
|
if (s[a] != x.s[a]) {
|
||
|
return (sign == 1 ? s[a] < x.s[a] : s[a] > x.s[a]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool operator<=(const BigInt& x) const {
|
||
|
return (*this < x || *this == x);
|
||
|
}
|
||
|
|
||
|
bool operator>(const BigInt& x) const {
|
||
|
return (!(*this < x) && !(*this == x));
|
||
|
}
|
||
|
|
||
|
bool operator>=(const BigInt& x) const {
|
||
|
return (*this > x || *this == x);
|
||
|
}
|
||
|
|
||
|
BigInt operator+(BigInt x) {
|
||
|
BigInt curr = *this;
|
||
|
if (curr.sign != x.sign) return curr - x.negative();
|
||
|
BigInt res;
|
||
|
for (int a = 0, carry = 0; a < s.size() || a < x.s.size() || carry; a++) {
|
||
|
carry += (a < curr.s.size() ? curr.s[a] - '0' : 0) + (a < x.s.size() ? x.s[a] - '0' : 0);
|
||
|
res.s += (carry % 10 + '0');
|
||
|
carry /= 10;
|
||
|
}
|
||
|
return res.normalize(sign);
|
||
|
}
|
||
|
|
||
|
BigInt operator-(BigInt x) {
|
||
|
BigInt curr = *this;
|
||
|
if (curr.sign != x.sign) return curr + x.negative();
|
||
|
int realSign = curr.sign;
|
||
|
curr.sign = x.sign = 1;
|
||
|
if (curr < x) return ((x - curr).negative()).normalize(-realSign);
|
||
|
BigInt res;
|
||
|
for (int a = 0, borrow = 0; a < s.size(); a++) {
|
||
|
borrow = (curr.s[a] - borrow - (a < x.s.size() ? x.s[a] : '0'));
|
||
|
res.s += (borrow >= 0 ? borrow + '0' : borrow + '0' + 10);
|
||
|
borrow = (borrow >= 0 ? 0 : 1);
|
||
|
}
|
||
|
return res.normalize(realSign);
|
||
|
}
|
||
|
|
||
|
BigInt operator*(BigInt x) {
|
||
|
BigInt res("0");
|
||
|
for (int a = 0, b = s[a] - '0'; a < s.size(); a++, b = s[a] - '0') {
|
||
|
while (b--) res = (res + x);
|
||
|
x.s.insert(x.s.begin(), '0');
|
||
|
}
|
||
|
return res.normalize(sign * x.sign);
|
||
|
}
|
||
|
|
||
|
BigInt operator/(BigInt x) {
|
||
|
if (x.s.size() == 1 && x.s[0] == '0') {
|
||
|
x.s[0] /= (x.s[0] - '0');
|
||
|
}
|
||
|
BigInt temp("0"), res;
|
||
|
for (int a = 0; a < s.size(); a++) res.s += "0";
|
||
|
int newSign = sign * x.sign;
|
||
|
x.sign = 1;
|
||
|
for (int a = s.size() - 1; a >= 0; a--) {
|
||
|
temp.s.insert(temp.s.begin(), '0');
|
||
|
temp = temp + s.substr(a, 1);
|
||
|
while (!(temp < x)) {
|
||
|
temp = temp - x;
|
||
|
res.s[a]++;
|
||
|
}
|
||
|
}
|
||
|
return res.normalize(newSign);
|
||
|
}
|
||
|
|
||
|
BigInt operator%(BigInt x) {
|
||
|
if (x.s.size() == 1 && x.s[0] == '0') {
|
||
|
x.s[0] /= (x.s[0] - '0');
|
||
|
}
|
||
|
BigInt res("0");
|
||
|
x.sign = 1;
|
||
|
for (int a = s.size() - 1; a >= 0; a--) {
|
||
|
res.s.insert(res.s.begin(), '0');
|
||
|
res = res + s.substr(a, 1);
|
||
|
while (!(res < x)) res = res - x;
|
||
|
}
|
||
|
return res.normalize(sign);
|
||
|
}
|
||
|
|
||
|
std::string toString() const {
|
||
|
std::string ret = s;
|
||
|
std::reverse(ret.begin(), ret.end());
|
||
|
return (sign == -1 ? "-" : "") + ret;
|
||
|
}
|
||
|
|
||
|
BigInt toBase10(int base) {
|
||
|
BigInt exp(1), res("0"), BASE(base);
|
||
|
for (int a = 0; a < s.size(); a++) {
|
||
|
int curr = (s[a] < '0' || s[a] > '9' ? (toupper(s[a]) - 'A' + 10) : (s[a] - '0'));
|
||
|
res = res + (exp * BigInt(curr));
|
||
|
exp = exp * BASE;
|
||
|
}
|
||
|
return res.normalize(sign);
|
||
|
}
|
||
|
|
||
|
BigInt toBase10(int base, BigInt mod) {
|
||
|
BigInt exp(1), res("0"), BASE(base);
|
||
|
for (int a = 0; a < s.size(); a++) {
|
||
|
int curr = (s[a] < '0' || s[a] > '9' ? (toupper(s[a]) - 'A' + 10) : (s[a] - '0'));
|
||
|
res = (res + ((exp * BigInt(curr) % mod)) % mod);
|
||
|
exp = ((exp * BASE) % mod);
|
||
|
}
|
||
|
return res.normalize(sign);
|
||
|
}
|
||
|
|
||
|
std::string convertToBase(int base) {
|
||
|
BigInt ZERO(0), BASE(base), x = *this;
|
||
|
std::string modes = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
||
|
if (x == ZERO) {
|
||
|
return "0";
|
||
|
}
|
||
|
std::string res = "";
|
||
|
while (x > ZERO) {
|
||
|
BigInt mod = x % BASE;
|
||
|
x = x - mod;
|
||
|
if (x > ZERO) x = x / BASE;
|
||
|
res = modes[stoi(mod.toString())] + res;
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
BigInt toBase(int base) {
|
||
|
return BigInt(this->convertToBase(base));
|
||
|
}
|
||
|
|
||
|
friend std::istream& operator>>(std::istream& is, BigInt& x) {
|
||
|
std::string s;
|
||
|
is >> s;
|
||
|
x = BigInt(s);
|
||
|
return is;
|
||
|
}
|
||
|
|
||
|
friend std::ostream& operator<<(std::ostream& os, const BigInt& x) {
|
||
|
os << x.toString();
|
||
|
return os;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
const int mod = 9987;
|
||
|
|
||
|
int n, m, x, y, z;
|
||
|
BigInt dist[1005];
|
||
|
vector<pair<int, BigInt>> g[1005];
|
||
|
bool vis[1005];
|
||
|
|
||
|
void dijkstra() {
|
||
|
for (int i = 1; i <= n; i++) {
|
||
|
dist[i] = BigInt(string("9000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"));
|
||
|
}
|
||
|
priority_queue<pair<BigInt, int>, vector<pair<BigInt, int>>, greater<pair<BigInt, int>>> q;
|
||
|
dist[1] = BigInt(1);
|
||
|
q.push(make_pair(1, 1));
|
||
|
while (!q.empty()) {
|
||
|
auto t = q.top();
|
||
|
q.pop();
|
||
|
if (vis[t.second]) continue;
|
||
|
for (auto i : g[t.second]) {
|
||
|
if (dist[i.first] > t.first * i.second) {
|
||
|
dist[i.first] = t.first * i.second;
|
||
|
q.push(make_pair(dist[i.first], i.first));
|
||
|
}
|
||
|
}
|
||
|
vis[t.second] = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main() {
|
||
|
#ifndef ONLINE_JUDGE
|
||
|
freopen64("data/P2384_11.in", "r", stdin);
|
||
|
#endif
|
||
|
cin >> n >> m;
|
||
|
for (int i = 1; i <= m; i++) {
|
||
|
cin >> x >> y >> z;
|
||
|
g[x].push_back(make_pair(y, BigInt(z)));
|
||
|
}
|
||
|
dijkstra();
|
||
|
cout << dist[n] % mod << endl;
|
||
|
return 0;
|
||
|
}
|